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The renowned general epidemic process describes the stochastic evolution of a population of individuals
which are either susceptible, infected, or dead. A second order phase transition belonging to the universality
class of dynamic isotropic percolation lies between the endemic and pandemic behavior of the process. We
generalize the general epidemic process by introducing a fourth kind of individuals, viz., individuals which are
weakened by the process but not yet infected. This weakening gives rise to a mechanism that introduces a
global instability in the spreading of the process and therefore opens the possibility of a discontinuous transi-
tion in addition to the usual continuous percolation transition. The tricritical point separating the lines of first
and second order transitions constitutes an independent universality class, namely, the universality class of
tricritical dynamic isotropic percolation. Using renormalized field theory we work out a detailed scaling
description of this universality class. We calculate the scaling exponents in an« expansion below the upper
critical dimensiondc=5 for various observables describing tricritical percolation clusters and their spreading
properties. In a remarkable contrast to the usual percolation transition, the exponentsb andb8 governing the
two order parameters, viz., the mean density and the percolation probability, turn out to be different at the
tricritical point. In addition to the scaling exponents we calculate for all our static and dynamic observables
logarithmic corrections to the mean-field scaling behavior atdc=5.
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I. INTRODUCTION

The formation and properties of random structures have
been a major theme in statistical physics for many years. If
the formation of such structures obeys local rules, these pro-
cesses can often be expressed in the language of population
growth. It is well known that two particular growth processes
lead to random structures with the properties of percolation
clusters. The so called simple epidemic process(SEP) leads
to directed percolation(DP) [1–4]. The SEP is also known as
an epidemic with recovery, the Gribov process[5,6], the sto-
chastic version of Schlögl’s first reaction[7,8], or in elemen-
tary particle physics as Reggeon field theory[9–11]. The so
called general epidemic process(GEP) [12–14], also known
as an epidemic with removal, generates isotropic percolation
clusters[15–18], and models therefore the universality class
of dynamic isotropic percolation(dIP).

Epidemic models like the SEP and the GEP are relevant
for a wide range of systems in physics, chemistry, biology,
and sociology. Undoubtedly, the potential of such simple
models has its limitations because they rely on strong sim-
plifying assumptions such as the homogeneity of the sub-
strate[19], isotropy of the infections, immobility of individu-
als, and so on. However, the transition between population
survival and extinction of these processes is a nonequilib-
rium continuous(second order) phase transition phenomenon
and hence is characterized byuniversalscaling laws which
are shared by entire classes of systems. Near these transi-
tions, simplistic epidemic models like the SEP and the GEP
are of great value, because they are powerful workhorses to
study the mutual properties of their entire universality class,
which also should include more realistic models.

The universal properties of DP and dIP are well known
today thanks to numerous studies of the SEP and GEP, re-
spectively. Relatively little is known, on the other hand, as to
whether and under what modifications these stochastic
growth processes allow for first order phase transitions be-
tween their endemic and pandemic states, and, by the same
token, for tricritical behavior at the phase-space boundary
between first and second order transitions. In the context of
DP, these questions where addressed to some extent by Oht-
suki and Keyes[20]. In this paper we will study this intrigu-
ing topic in the context of dIP by generalizing the famous
GEP.

The standard GEP, assumed for simplicity to take place on
a lattice[15], can be described with the help of the reaction
scheme

Ssnd + Xsmd→
k

Xsnd + Xsmd, s1.1ad

Xsnd→
l

Esnd, s1.1bd

with reaction ratesk andl. S, X, andE, respectively, denote
susceptible, ill, and dead(or immune) individuals on nearest
neighbor sitesn and m. A susceptible individual may be
infected by an ill neighbor with probabilityk [reaction
(1.1a)]. By this mechanism the disease(henceforth also
called the agent) spreads diffusively. Ill individuals die with
a probabilityl [reaction(1.1b)]. There is no healing of in-
fected individuals and no spontaneous infection. In a finite
system the manifold of states without any infected individual
is inevitably absorbing. Whether a single infected site leads
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to an everlasting epidemic in an infinite system depends on
the ratiok /l. With l fixed there is a certain valuek=kc such
that for all k.kc an eternal epidemic(a pandemic) occurs.
The probabilityPskd for the occurrence of a pandemic as a
function of k goes to zero continuously at the critical point
kc. The behavior of the model near this critical point is in the
universality class of dIP.

Of course, one can conceive many alterations of the GEP.
Some modifications will lead to models which still belong to
the dIP universality class whereas other alterations will pro-
duce models belonging to other universality classes. As an
example of the latter, one might think of mobile susceptible
or immune individuals which, say, diffuse through space.
The resulting models are reaction-diffusion type models
which have nothing to do with dIP[21]. We are not inter-
ested in this kind of alteration. Rather, we are interested in
modifications of the GEP that preserve the dIP universality
class and which, for certain parameter values, allow for tri-
criticality and first order percolation transitions. To be more
specific, we are interested in the most relevant mechanism
leading to tricritical and first order dIP. In spirit our model is
closely related to the canonical model for tricriticality in
equilibrium systems, viz., thef4 model with an additionalf6

term where the free energy density is of the formf =tf2

+g4f4+g6f6 [22]. If g4 is positive then higher order terms
including thef6 term are irrelevant and one has in mean-
field theory a second order transition whent passes through
zero. Otherwise, however, one has an instability and higher
order terms are required for stabilization, of which thef6

term is the most relevant one. Forg4,0 one has a first order
transition at a critical value oft that depends ong4 and g6
and the pointt=g4=0 constitutes a tricritical point. Our
model to be defined in the next paragraph is such that it
introduces a similar instability in the GEP and via this insta-
bility it allows for tricriticality and first order percolation. In
its field theoretic description our model features, compared
to the standard GEP, an additional higher order term which
becomes the most relevant stabilizing term when the usual
GEP coupling vanishes.

Our modification of the GEP can be defined in simple
terms. The basic idea is to enrich the reaction scheme(1.1)
by introducingweakindividualsY. Instead of being infected
right away by an ill neighbor, any susceptible individual may
be weakened with a reaction ratem by such an encounter.
When the disease passes by again, a weakened individual is
more sensitive and gets sick with a raten.k. In the follow-
ing we refer to this model as the generalized GEP(GGEP).
In addition to the reactions(1.1), the GGEP is described by
the reactions

Ssnd + Xsmd→
m

Ysnd + Xsmd, s1.2ad

Ysnd + Xsmd→
n

Xsnd + Xsmd. s1.2bd

As we go along, we will show that the occurrence of the
weak individuals gives rise to an instability that can lead to a
discontinuous transition and compact(Eden[23,24]) growth
of the epidemic ifn is greater than a critical valuencsk ,md.

In the enlarged three-dimensional phase space spanned byk,
m, andn with fixed l, there exists a critical surface associ-
ated with the usual continuous percolation transition and a
surface of first order transitions characterized by a finite
jump in the probabilityPsk ,m ,nd for the occurrence of a
pandemic. These two surfaces of phase transitions meet at a
line of tricritical points.

The focus of this paper lies on the universal properties of
the GGEP near this tricritical line. By using the methods of
renormalized field theory we work out a scaling description
of the universality class of tricritical dynamic isotropic per-
colation (TdIP) to which the tricritical GGEP belongs. We
study a multitude of static and dynamic observables that play
important roles in percolation theory. In particular we calcu-
late the critical exponents describing the scaling behavior of
these observables below five dimensions as well as logarith-
mic corrections to the mean-field scaling behavior in five
dimensions.

The outline of our paper is as follows. In Sec. II we con-
sider the GGEP in a mean-field theory. As the main result of
Sec. II, the mean-field analysis will reveal the structure of the
phase diagram. With the aim of studying the effects of fluc-
tuations, we condense the principles defining TdIP into a
field theoretic model in Sec. III. In Sec. IV we work out the
scaling properties of static aspects of TdIP. Section V treats
the dynamic scaling properties. Concluding remarks are pro-
vided in Sec. VI. There is one Appendix in which we sketch
the calculation of a parameter integral that is helpful in com-
puting Feynman diagrams.

II. MEAN-FIELD THEORY

A mean-field description of the GGEP can be formulated
by treating the reaction equations(1.1) and(1.2) as determin-
istic equations without fluctuations. This deterministic ap-
proximation leads to the system of differential equations

Ṡsn,td = − sk + mdSsn,td o
m

NNsnd

Xsm,td, s2.1ad

Ẏsn,td = fmSsn,td − nYsn,tdg o
m

NNsnd

Xsm,td, s2.1bd

Ẋsn,td = fkSsn,td + nYsn,tdg o
m

NNsnd

Xsm,td − lXsn,td,

s2.1cd

Ėsn,td = lXsn,td s2.1dd

governing the dynamics of the different kinds of individuals.
Here,om

NNsnd denotes summation over the nearest neighbors
of n. At each lattice site there is the additional constraint

S+ X + Y + E = 1. s2.2d

Thus,S, X, Y, andE can be interpreted as the probability of
finding the corresponding state at a siten. Note that the
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processes can proceed only at places where the probability to
find ill individuals in the neighborhood is not zero. We use
the canonical initial condition that all sites of the initial state
are susceptible except for the site at the origin, which is ill,
X0snd=dn,0 andY0snd=E0snd;0.

Equations(2.1a) and(2.1b) are readily integrated. We ob-
tain

Ssn,td = S0sndexpS− r o
m

NNsnd

Esm,tdD s2.3d

and

mSsn,td + sr − ndYsn,td = fmS0snd + sr − ndY0sndg

3expS− n o
m

NNsnd

Esm,tdD ,

s2.4d

where we have definedr=k+m. The time scalel has been
set to unity for simplicity. Equation(2.1) together with the
constraint(2.2) leads finally to the mean-field equation of
motion of the GGEP,

Ėsn,td = 1 −Esn,td −H r − k

r − n
expS− n o

m

NNsnd

Esm,tdD
+

k − n

r − n
expS− r o

m

NNsnd

Esm,tdDJS0snd. s2.5d

In the asymptotic regimeunu ,t→` one can neglect time and
space dependence in Eq.(2.5) and use the approximation
om

NNsnd Esm ,td<zEsn ,td, z being the coordination number of
the lattice. Hence the asymptotic values ofE are the solu-
tions of the equation of state

E =
r − k

r − n
s1 − e−znEd +

k − n

r − n
s1 − e−zrEd = :fsEd. s2.6d

By setting r=k, corresponding tom=0, one obtains the
equation of state of the usual GEP[15]

E = 1 −e−zkE s2.7d

with k=kc=1/z determining the second order phase transi-
tion corresponding to ordinary isotropic percolation. For
k,kc, Eq. (2.7) has only the solutionE=0, which means
that the disease does not percolate, i.e., it is endemic. In the
other case,k.kc, a stable solutionE.0 arises, signaling
the percolative pandemic character of the disease. These
types of solutions exist also in the full equation of state(2.6).
Using kør, one demonstrates easily thatfsEd increases
monotonically from zero to one in the interval 0øE,`.
Thus,E=0 is always a solution of Eq.(2.6). It follows from
the equation of motion(2.5) that only solutions of Eq.(2.6)
with f8sEd,1 are stable. Becausef8s0d=zk, a stable perco-
lating solutionE.0 exists always fork.kc. The existence
of more than one nontrivial solution requires necessarily that
f88sEd=0 at least for one valueE.0. From Eq.(2.6) we
derive the inequality

f88sEd/z2 ø frn − ksr + ndgexpf− zE maxsr,ndg. s2.8d

With f88sEd,0 for E@1 and f88s0d /z2=rn−ksr+nd we
therefore find

1

k
.

1

r
+

1

n
, k , kc s2.9d

as the necessary and sufficient conditions for the existence of
a second locally stable solutionE.0 in addition toE=0
with a discontinuous transition between the two. The line of
tricritical points where the first and the second order transi-
tions meet in thek-r-n phase space is determined by 1/k
=1/r+1/n=z.

In the following we focus on the phenomena arising near
the tricritical line. In this region of the phase space,Esn ,td is,
except for a microscopic region around the originn=0 of the
position space, small and slowly varying. Hence, we may
approximate Eq.(2.5) by the deterministic reaction-diffusion
equation

Ėsx,td = D¹2Esx,td − lFtEsx,td +
f

2
Esx,td2 +

g

6
Esx,td3G ,

s2.10d

whereD=ka2, with a being the lattice constant,t=1−k /kc,
f =krns1/r+1/n−1/kd /kc

2, and g=frnsr+n+kd−ksr
+nd2g /kc

3<rn /kc
2. As a consequence of Eq.(2.1d) we have

the constraintĖsx ,tdù0.
Holding the positive couplingg constant, Eq.(2.10) com-

prises only two tunable parameters, viz.,t and f, and hence
the dimensionality of the phase diagram is reduced to two.
As follows from the different types of solutions of Eq.(2.10)
to be discussed in a moment, this two-dimensional phase
diagram features a line of second order transitions(l line), a
line of first order transitions, and a tricritical point deter-
mined byt= f =0 separating the two lines of transitions. In
addition, there are two spinodal lines. The entire phase dia-
gram is depicted in Fig. 1.

Equation(2.10) has, in addition to the trivial solutionE
=0, which is stable fort.0, a nontrivial locally stable sta-
tionary homogeneous solutionE=A with

A = sÎ9f2/4 − 6gt − 3f/2d, s2.11d

which is physical only ifA.0. For f .0 one has therefore a
continuous transition fromE=0 st.0d to E=A<2utu / f

FIG. 1. The mean-field phase diagram.
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st,0d. However, forf ,0 there is a certain valuet=td be-
tween the spinodalst=3f2/8g andt=0 for the discontinuous
transition fromE=0 to E=A. The values oftd may be deter-
mined by studying a traveling wave solution of the equation
of motion (2.10) that describes the infection front of a big
expanding sherical cluster of the epidemic. Such a solution is
given by

Esx,td = Ah1 − tanhfbsx − vtdgj/2, s2.12ad

Xsx,td = Ėsx,td =
vbA

2hcoshfbsx − vtdgj2 , s2.12bd

with

b =Î lg

48D
A, v =Î3lD

4g
sÎ9f2/4 − 6gt + f/2d.

s2.13d

The conditionXsx,tdù0 requiresvù0. The first order tran-
sition from E=0 to E=A at td is therefore defined by the
phase equilibrium conditionv=0, leading to

td =
f2

3g
. s2.14d

E jumps att=td from zero to the value 2uf u /g.

III. FIELD THEORETIC MODEL

In this section we will derive a dynamic response func-
tional [25–27] for the GGEP based on very general argu-
ments alluding to the universal properties of TdIP. First we
distill the basic principles of percolation processes allowing
for tricritical behavior. Next, we cast these principles into the
form of a Langevin equation. Then we refine the Langevin
equation into a minimal field theoretic model.

As an alternative avenue to a field theoretic model for the
GGEP one migtht be tempted to use the so-called “exact”
approach which, as a first step, consists of reformulating the
microscopic master equation for the reactions(1.1) and(1.2)
as a bosonic field theory on the lattice. The next and pivotal
step in this approach is to take the continuum limit. Albeit
the “exact” approach with a naive continuum limit leads to a
consistent dynamic functional for the GGEP(after deleting
several irrelevant terms), this approach must be cautioned
against. Strictly speaking, one has to use Wilson’s statistical
continuum limit[28] in the renormalization theory of critical
phenomena. This procedure consists of successive coarse
graining of the mesoscopic slow variables(order parameters
and conserved quantities as functions of microscopic degrees
of freedom), the elimination of fluctuating residual micro-
scopic degrees of freedom, and a rescaling of space and time.
In general, microscopic variables donot qualify as order pa-
rameters. Alarming examples are the pair contact processes
(PCP and PCPD), where a naive continuum limit of the mi-
croscopic master equations leads to untenable critical mod-
els. Therefore, we devise our field theoretic model represent-
ing the TdIP universality class using a purely mesoscopic
stochastic formulation based on the correct order parameters

identified through physical insight into the nature of the criti-
cal phenomenon. Hence, our dynamic response functional
stays in full analogy to the Landau-Ginzburg-Wilson func-
tional and provides a reliable starting point for the field theo-
retic method.

A. Langevin equation

The essence of isotropic percolation processes can be
summarized by four statements describing the universal fea-
tures of the evolution of such processes on a homogeneous
substrate. Denoting the density of the agents(the infected
individuals) by nsr ,td and the density of the debris(the im-
mune or dead individuals) which is proportional to the den-
sity of the weakened substrate bymsr ,td, these four state-
ments read:

(i) There is a manifold of absorbing states withn;0 and
corresponding distributions ofm depending on the history of
n. These states are equivalent to the extinction of the epi-
demic.

(ii ) The substrate becomes activated(infected) depending
on the density of the agentsand the density of the debris.
This mechanism introduces memory into the process. The
debris ultimately stops the disease locally. However, it is
possible that the activation is strengthened by the debris
through some mechanism(sensitization of the substrate).

(iii ) The process(the disease) spreads out diffusively. The
agents(the activated substrate) become deactivated(con-
verted into debris) after a short time.

(iv) There are no other slow variables. Microscopic de-
grees of freedom can be summarized into a local noise or
Langevin forcezsr ,td respecting the first statement(i.e., the
noise cannot generate agents).

The general form of a Langevin equation resembling
these statements is given by

l−1ṅ = ¹2n + Rsn,mdn + z, s3.1ad

msr ,td = lE
−`

t

nsr ,t8ddt8, s3.1bd

wherel is a kinetic coefficient and the Gaussian noise cor-
relation reads

zsr ,tdzsr 8,t8d = l−1Qsn,mdnsr ,tddsr − r 8ddst − t8d

− l−1ansr ,td¹2dsr − r 8ddst − t8d

+ Q8sn,mdnsr ,tdnsr ,t8ddsr − r 8d + ¯ .

s3.2d

The first row in Eq. (3.2) represents time-local reaction
noise. The second row describes noise originating from dif-
fusion and the last row shows an example of possible time-
nonlocal noise (quenched noise) that may be acquired
through random disorder or through the elimination of mi-
croscopic slow variables, e.g., fluctuations of the debris. The
structure of the three terms is so that they respect the absorb-
ing state condition. Of course many further contributions to
Eq. (3.2) are conceivable(hence the ellipsis in the third row)
including non-Markovian and also non-Gaussian noise. We
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will see below that all these terms turn out to be irrelevant
and that only the simplest form of reaction noise contributes
the minimal field theoretic model.

The dependence of the rateRsn,md on the density of the
debris msr ,td describes memory of the process mentioned
above. We are interested primarily in the behavior of the
process close to the tricritical point, wheren andm are small
allowing for polynomial expansionsRsn,md=−t−an− fm
−gm2/2+¯, Qsn,md=g+¯, and Q8sn,md=g8+¯. The
justification for the truncation of the expansions will be
given later by ir relevance-irrelevance arguments. As long as
f .0, the second order termgm2 of the rateR is irrelevant
near the transition point and the process models ordinary
dynamic isotropic percolation[16,17]. We permit both signs
of f so that our model accounts for sensitization(weakened
substrate) and allows for compact(Eden) spreading. Conse-
quently we need the second order term for stabilization pur-
poses, i.e., to limit the densityn to finite values.

B. Dynamic response functional

In order to apply the renormalization group(RG) and
field-theoretic methods[29,30], it is convenient to use the
path-integral representation of the underlying stochastic pro-
cess nsr ,td [25–27]. With the imaginary-valued response
field denoted byñsr ,td, the generating functional of the
Green functions(connected response and correlation func-
tions) takes the form

WfH,H̃g = lnE D†ñ,n‡exph− J†ñ,n‡ +E ddr E dtsH̃n

+ Hñdj. s3.3d

The generating fieldHsr ,td corresponds to an additive source
term for the agent in the equation of motion(3.1). Therefore,
the response function defined by a functional derivative with
respect toHsr ,td describes the influence of a seed of the
agent atsr ,td. The dynamic functionalJfñ,ng and the func-
tional measureDfñ,ng~pr ,t fdñsr ,tddnsr ,td /2pig are de-
fined using a prepoint(Ito) discretization with respect to time
[27]. The prepoint discretization leads to the causality rule
ustø0d=0 in response functions. This rule will play an im-
portant role in our diagrammatic perturbation calculation be-
cause it forbids response propagator loops(see below). Note
that the path integrals are always calculated with the initial
and final conditionsnsr ,−`d= ñsr ,`d=0.

The stochastic process defined by Eqs.(3.1) and (3.2)
leads via the expansions ofR, Q, andQ8 to the preliminary
dynamic response functional

J8 =E ddrHlE dtFñSl−1]t − ¹2 + t + an+ fm+
g

2
m2Dn

−
g

2
nñ2 − ans¹ñd2G −

g8

2
FlE dtñnG2J . s3.4d

As we have remarked above, the term proportional tog may
be neglected only if the couplingf is positive definite. In this
case Eq.(3.4) reduces to the response functional of usual

dynamic percolation[16,17]. As in all models with an ab-
sorbing state transition, the functionalJ8 includes a redun-
dant variable which has to be removed before any applica-
tion of relevance-irrelevance arguments since it has no
definite scaling dimension. This redundant variable is con-
nected with the rescaling transformation

n → bn, ñ → b−1ñ, a → ba, s3.5ad

a → b−1a, f → b−1f, g → b−2g, g → bg,

s3.5bd

which leavesJ8 invariant. Exploiting this invariance, we
may setg=1 which fixes the redundancy. Of course, this is
justified only if g is a finite positive quantity in the region of
interest of the phase diagram.

For the steps to follow, we need to know the naive dimen-
sions of the constituents ofJ8 after the removal of the re-
dundant variable. As usual, we introduce a convenient exter-
nal length scalem−1 so thatr ,m−1 andlt,m−2. Exploiting
the fact thatJ8 has to be dimensionless, we readily find

ñ , m2, n , md−2, m, md−4, s3.6ad

t , m2, f , m6−d, g , m2s5−dd, s3.6bd

a , m4−d, a , m−2, g8 , m4−d. s3.6cd

The highest dimensiond at which any of the finite and posi-
tive couplings becomes marginal(acquires a vanishing naive
dimension) corresponds to the upper dimensiondc of the
theory. This dimension separates trivial mean-field critical
behavior ford.dc from nontrivial behavior in the regime
where d,dc and where the relevant variablet is small.
Thus, if f is finite and positive it follows thatdc=6. Theng,
a, g8, anda have negative naive dimensions and are there-
fore irrelevant. The corresponding terms in the response
functional (3.4) vanish at the critical fixed point, and the
response functional displays the asymptotic symmetry
f−1/2ñsr ,td↔−f1/2msr ,−td [16]. The resulting response func-
tional is that of the GEP[16,17].

However, if f is zero, as it is at the tricritical point, we
must useg to fix the upper critical dimension which leads to
dc=5. The dimensions ofa, g8, anda are negative neardc.
Thus, diffusional and quenched randomness of the noise is
irrelevant here as it is for the GEP. Dimensional analysis also
justifies the truncation of the expansions ofP, Q, andQ8, as
well as the elimination of other terms. All higher order terms
are irrelevant in the renormalization group approach because
they carrying anegativenaive dimension neard=dc. Collect-
ing, we obtain the dynamic response functional

J =E ddrlE dtñSl−1]t − ¹2 + t + fm+
g

2
m2 −

1

2
ñDn

s3.7d

as our minimal field theoretic model for the TdIP universality
class. We shall see as we move along, indicating the consis-
tency of our model, that the proper elimination of IR irrel-
evant terms has led to an UV renormalizable theory at and
below five dimensions.
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Note that, contrary to dIP, the functional(3.7) does not
have an asymptotic symmetry that relates the two fieldsñ
and n. Thus, these fields will get independent different
anomalous dimensions leading to two different order param-
eter exponents.

Before we go on, we extract the diagrammatic elements
implicit in J. These elements will play a central role later on
when we calculate the Green functions perturbatively. As
usual, the Green functions are the cumulants of the fieldsn
andñ which correspond in graphical perturbation expansions
to the sums of connected diagrams. Their actual calculations
are performed most economically in a time-momentum rep-
resentation. To this end we will use the spatial Fourier trans-
forms of the fieldsn and ñ defined via

nsr ,td =E
q

eiq·rnqstd, ñsr ,td =E
q

eiq·r ñqstd, s3.8d

whereeq¯ : =s2pd−deddq¯. In the time-momentum repre-
sentation we can simply read off the diagrammatic elements
from the dynamic functional. The harmonic part ofJ com-
prises the Gaussian propagator

knqstdñq8st8dl0 = s2pddGsq,t − t8ddsq + q8d, s3.9ad

Gsq,td = ust − t8dexpf− lst + q2dtg, s3.9bd

wherek¯l0 indicates averaging with respect to the harmonic
part of the dynamic functional(3.4). The nonharmonic terms
give rise to the verticesl, −l2fust− t8d, and −l3gust
− t8dust− t9d. All four diagrammatic elements ofJ are de-
picted in Fig. 2.

C. Quasistatic model

As mentioned earlier, we are interested in the dynamic as
well as the static, i.e.,t→`, properties of tricritical percola-
tion. Of course, we could base our entire RG analysis on the
full dynamic functionalJ as given in Eq.(3.4). Then we
could extract the static behavior from the dynamic behavior
in the end by lettingt→`. This would mean, however, that
we had to determine all the required renormalizations from
dynamic Feynman diagrams composed of the diagrammatic
elements listed in Fig. 2. Fortunately, there is a much more
economic approach possible here which is based on taking
the so-called quasistatic limit. We will see shortly that the
perturbation theory simplifies tremendously in this limit. All
but one renormalization factor can be calculated using this
much simpler approach. Only for the one remaining renor-

malization do we have to resort to the dynamic response
functionalJ. Taking the quasistatic limit amounts to switch-
ing the fundamental field variable from the density of the
agents to the density of the debrismsr d : =msr ,`d
=le−`

` dtnsr ,td left behind by the epidemic. Then, the static
properties of TdIP can be studied via the Green functions of
the debris density. In particular the response functions
kpi msr idñs0,0dl and their connected counterparts will be
important for our analysis because they encode the static
properties of the percolation cluster of the debris emanating
from a seed localized at the origin at time zero.

After this prelude we now formally take the quasistatic
limit of the dynamic functional. The structure ofJ is such
that we can directly let

ñsr ,td → s̃sr d, msr d = lE
−`

`

dtnsr ,td → ssr d.

s3.10d

This procedure leads us fromJ to the quasistatic Hamil-
tonian

H =E ddrs̃St − ¹2 +
f

2
s+

g

6
s2 −

1

2
s̃Ds. s3.11d

It is easy to see thatH generates each Feynman diagram that
contributes tokpi msr idp jñsr̃ j ,0dl. Standing alone, however,
this Hamiltonian is not sufficient to describe the static prop-
erties of tricritical isotropic percolation(TIP). As a reminder
of its dynamical originH must be supplemented with the
causality rule that forbids closed propagator loops.

The propagator of the quasistatic theory follows from Eq.
(3.11) [or likewise from Eq.(3.9)] as

ksqs̃q8l0 = s2pddGsqddsq + q8d, Gsqd =
1

t + q2 .

s3.12d

As far as vertices are concerned,H implies the three-leg
vertices 1 and −f and the four-leg-vertex −g. The quasistatic
propagator and vertices are shown in Fig. 3.

Knowing all the diagrammatic elements, one can straight-
forwardly check in explicit graphical perturbation expan-
sions that the quasistatic Green functions calculated withH
are equal diagram for diagram to the zero-frequency limit of
the dynamic Green functions[the Green functions of the
time integrals ofnsr ,td] calculated withJ.

FIG. 2. The diagrammatic elements implied in the dynamic
functionalJ.

FIG. 3. The diagrammatic elements implied in the quasistatic
HamiltonianH.
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Before embarking on our RG analysis, we finally mention
the naive dimensions of the quasistatic fields. These are
given by

s̃, m2, s, md−4. s3.13d

IV. STATIC SCALING PROPERTIES

Now we will study the static properties of TdIP, that is,
the properties of TIP. The dynamic properties of TdIP will be
addressed later on.

A. Diagrammatics

In principle, we could extract the properties of TIP di-
rectly from the correlation functions

kssr1d ¯ ssrNds̃srN+1d ¯ s̃srN+Ñdl

=E Dfs,s̃gssr 1d ¯ s̃sr N+Ñde−Hfs̃,sg. s4.1d

However, since our model is translationally invariant, it is
much more convenient to use the vertex functionsGÑ,N in-
stead, which are related to the connected counterparts

GN,Ñshr jd = kssr 1d ¯ ssr Nds̃sr N+1d ¯ s̃sr N+Ñdlsconnd

s4.2d

of the correlation functions via Legendre transformation of
their generating functionals[30]. Graphically, the vertex
functions consist of amputated one-line irreducible diagrams.
As usual in determining the renormalizations, we can restrict
ourselves to the superficially divergent vertex functions, i.e.,
those vertex functions that have a non-negativem dimension
at the upper critical dimensiondc. A simple dimensional
analysis shows that only the vertex functions that correspond
to the different terms of the Hamiltonian(3.11), viz., G1,1,
G1,2, G2,1, and G1,3, are primitively divergent. Thus, the
theory is renormalizable by additive and multiplicative
renormalization of the fields and the parameters of the
theory.

Throughout, we will use dimensional regularization to
calculate the Feynman diagrams constituting the required
vertex functions, i.e., we will compute the diagrams in di-
mensions where they are finite for large momenta and then
continue the dimension analytically towardsdc. This proce-
dure converts the logarithmic large-momentum singularities
of a cutoff regularization into poles in the deviation«=dc
−d from dc. However, polynomial large-momentum singu-
larities that require additive renormalizations are unac-
counted for in dimensional regularization. In order to discuss
such additive renormalizations, we will occasionally use a
cutoff regularization with a large momentum cutoffL.

At this place it is worth stressing that real critical systems
not involve any UV divergencies because all inverse wave-
lengths of fluctuations have a physical cutoffL. On the other
hand, critical systems suffer from IR divergencies. However,
if and only if we use a reliable field theory, we can formally
transform IR divergencies into UV divergencies by a simple

rescaling. In this way we can learn about IR scaling proper-
ties of the critical system indirectly via the UV renormaliza-
tions. A correct and reliable statistical field theory constitutes
what Wilson [28] calls a logarithmic theory free of length
scales. Only within such a theory does it make sense to apply
the techniques of renormalized field theory to critical sys-
tems.

1. Divergent one-loop diagrams

Two divergent one-loop diagrams can be assembled from
the diagrammatic elements listed in Fig. 3. These diagrams,
which contribute to the vertex functionsG1,1 and G1,2 are
shown in Fig. 4. It is easy to see that they are linearly diver-
gent(i.e., them dimension is 1) for d=dc=5. No logarithmic
divergencies arise at one-loop order. Thus, the theory can be
renormalized to one-loop order by additive renormalizations

f → f̊ = m«sv − bLm−2«gd, s4.3ad

t → t̊ = t − aLm−« f̊ = st − aLvd + abL2m−2«g,

s4.3bd

where the open circles indicate unrenormalized quantities
and wherea andb are positive constants.

Next we will switch to dimensional regularization for
convenience. In this method all polynomial divergencies
arising from the large cutoff are formally set to zero, and
hence the two diagrams in Fig. 4 become finite atdc. Thus,
the additive renormalizations Eq.(4.3) become formally su-
perfluous in dimensional regularization. However, it has to
be emphasized that dimensional regularization is only a for-
mal trick. Physically the additive renormalizations are al-
ways present and we need the interaction term proportional
to the coupling constantf to renormalize the theory, contrary
to the claim of Ref.[20]. Using dimensional regularization
we have to keep in mind that these additive renormalizations
do exist and that the critical “temperature” is shifted by a
term t̊c=aLv−abL2m−2«g+Osg2d. This t̊c is formally set to
zero in dimensional regularization.

2. Two-loop calculation

Since there are no« poles at one-loop order, we have to
proceed to higher orders in perturbation theory to find non-
trivial critical exponents. We will see that« poles do occur at
two-loop order and that the two-loop diagrams will lead us to
anomalous contributions to the critical exponents of order«.

We start with the self-energy. The two-loop diagrams con-
tributing to the renormalization ofG1,1 are listed in Fig. 5.

FIG. 4. One-loop diagrams contributing to the renormalization
of G1,1 and G1,2 if a momentum-cutoff regularization is used. In
dimensional regularization, these diagrams are finite.
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In the following we will use a compact notation for the
diagrams. For example,(5a) refers to diagram(a) of Fig. 5.
For the momentum integrals occurring in the diagrams we
will use the abbreviations

Iklm =E
q1,q2

1

sq1
2 + 1dksq2

2 + 1dlfsq1 + q2d2 + 1gm . s4.4d

This has the benefit that we can write the divergent parts of
the diagrams in a compact form. For the self-energy we have

s5ad = −
g

2
t−«SI112t −

d − 4

d
I113q

2D , s4.5ad

s5bd =
f2

2
t−«I113, s5cd = f2t−«I122. s4.5bd

The Iklm can be calculated very efficiently with help of the
parameter integral

Isa,b;cd =E
q1,q2

1

sq1
2 + adsq2

2 + bdfsq1 + q2d2 + cg2 .

s4.6d

Using dimensional regularization, we find the« expansion
result

Isa,b;cd = −
2pG«

2

3«
sa + b − cd + Os«0d s4.7d

for the parameter integral. This calculation is sketched in the
Appendix. In Eq. (4.7) we used the shorthandG«=Gs1
+« /2d / s4pdd/2 for convenience. By taking derivatives with
respect to the parametersa, b, and c, we get the singular
parts

I122= − I112= − 2I113=
2pG«

2

3«
s4.8d

of the required original integrals. Collecting we find

G1,1= st + q2d − s5ad − s5bd − s5cd = S1 −
A«g

«
t−«Dt

−
3A«f2

2«
t−« + S1 +

A«g

10«
t−«Dq2 s4.9d

for the singular part of the inverse response function. Here,
we introducedA«=pG«

2/3 for notational convenience.
Now we turn to the vertex functionG1,2. Its two-loop

contributions are shown in Fig. 6. We obtain

s6ad = s6bd = s6ed = s6fd = fgt−«I113, s4.10ad

s6cd = 2 3 s6dd = s6gd = s6hd = 2fgt−«I122. s4.10bd

Summing up the individual terms we get

G1,2= S1 −
10A«g

«
t−«D f . s4.11d

For the vertex functionG2,1 we have to calculate the dia-
grams in Fig. 7. With

s7ad = s7bd = − gt−«I113, s7cd = − 2gt−«I122, s4.12d

we obtain

G2,1= S1 −
2A«g

«
t−«D . s4.13d

It remains to considerG1,3. The diagrams in Fig. 8 lead to

2 3 s8ad = 2 3 s8bd = s8dd = 3g2t−«I113,

2 3 s8cd = s8ed = 2 3 s8fd = 6g2t−«I122, s4.14d

From these expressions we get

G1,3= S1 −
18A«g

«
t−«Dg. s4.15d

For completeness, we conclude our quasistatic perturba-
tion theory by briefly returning to a cutoff regularization. In
cutoff regularization there are two additional singular two-
loop diagrams(see Fig. 9). These diagrams have divergent
insertions of the singular one-loop diagram(4b). Hence, the

FIG. 5. Two-loop diagrams contributing to the renormalization
of G1,1.

FIG. 6. Two-loop diagrams contributing to the renormalization
of G1,2.

FIG. 7. Two-loop diagrams contributing to the renormalization
of G2,1.
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diagrams of Fig. 9 are finite in dimensional regularization.
However, in the more physical cutoff regularization they di-
verge linearly with the cutoff. These divergencies are ulti-
mately cancelled by the additive renormalizations, Eq.(4.3).

B. Renormalization

Next we absorb the« poles into a reparametrization of the
fields and the parameters of the theory. For the quasistatic
fields we employ the renormalizations

s→ s̊= Z1/2s, s̊→ s̊̃= Z̃1/2s̃. s4.16d

For the parameters of the quasistatic Hamiltonian(3.11) we
use the scheme

A«g → A«g̊ = Zl
−3Z̃Zuum2«, s4.17ad

A«
1/2f → A«

1/2f̊ = Zl
−2Z̃1/2Zvvm«, s4.17bd

t → t̊ = Zl
−1sZtt + Yv2d, s4.17cd

where

Zl = sZZ̃d1/2. s4.18d

It follows from Eq. (4.16) that the vertex functions are
renormalized by

GÑ,N → G̊Ñ,N = Z̃−Ñ/2Z−N/2GÑ,N. s4.19d

Using Eq. (4.19) together with our two-loop results(4.9),
(4.11), (4.13), and(4.15) we find

Z = 1 −
22u

5«
+ Osu2d, Z̃ = 1 +

21u

5«
+ Osu2d,

s4.20ad

Zu = 1 +
18u

«
+ Osu2d, Zv = 1 +

10u

«
+ Osu2d,

s4.20bd

Zt = 1 +
u

«
+ Osu2d, Y =

3

2«
+ Osud, s4.20cd

for the renormalization factors. Equation(4.20a) implies

Zl = 1 −
u

10«
+ Osu2d. s4.21d

C. Renormalization group equation

In order to explore the scaling properties of tricritical per-
colation we now set up a renormalization group equation
(RGE). This can be done in a routine fashion by exploiting
the fact that the bare(unrenormalized) quantities must not
depend on the arbitrary mesoscopic length scalem−1 intro-
duced in the course of the renormalization. In particular, the
bare Green functions must be independent ofm, i.e.,

m]mu0G̊N,Ñ = 0, s4.22d

where ]mu0 denotesm derivatives at fixed bare parameters.
Switching from bare to renormalized quantities, the identity
(4.22) translates into the RGE

FDm +
1

2
sNg + Ñg̃dGGN,Ñ = 0. s4.23d

Here,Dm stands for the RG differential operator

Dm = m]m + stkt + v2kvtd]t + vkv]v + bu]u s4.24d

that features the Gell-Mann–Low functions

bu = m]mu0u = S− 2« +
3

2
g +

1

2
g̃ − guDu, s4.25ad

vkv = m]mu0v = S− « + g +
1

2
g̃ − gvDv, s4.25bd

tkt + v2kvt = m]mu0t = Sg + g̃

2
− gtDt − gtvv

2,

s4.25cd

and the Wilson functions

g = m]mu0 ln Z, g̃ = m]mu0 lnZ̃, s4.26ad

gi = m]mu0ln Zi, i = u,v,t. s4.26bd

From Eq. (4.25a) we know that the functionsbu and vkv
begin with the zero-loop terms −2«u and −«v, respectively.

FIG. 8. Two-loop diagrams contributing to the renormalization
of G1,3.

FIG. 9. Two-loop diagrams that contain insertions of the one-
loop diagram shown in Fig. 4(b). In dimensional regularization,
these two-loop diagrams are finite.
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The higher order terms are determined by the Wilson func-
tions. The particular form of these functions can be straight-
forwardly extracted by using g . . . =m]mu0ln Z. . .
=b]uln Z. . . . In minimal renormalization theZ factors have
a pure Laurent expansion with respect to«, i.e., they are of
the form Z. . . =1+Z. . .

s1d /«+Z. . .
s2d /«2+¯. Thus, recursively in

the loop expansion, the Wilson functions also have a pure
Laurent expansion. Moreover, because the Wilson functions
must be finite for«→0, all the « poles in this expansion
have to cancel(this provides a valuable check for higher
order calculations). Hence, we can obtain the Wilson func-
tions readily from the formulag. . .=−2u]uZ

s1d. The same ar-
gumentation also leads togtv=−2Ys1d−2u]uY

s1d, whereYs1d

is the coefficient of the first order term in the Laurent expan-
sion Y=Ys1d /«+¯ of the Y factor. Using this prescription,
we derive from our renormalization factors(4.20) that the
Wilson functions are given by

g =
44u

5
+ Osu2d, g̃ = −

42u

5
+ Osu2d, s4.27ad

gu = − 36u + Osu2d, gv = − 20u + Osu2d, s4.27bd

gt = − 2u + Osu2d, gtv = − 3 +Osud. s4.27cd

From these results we get

bu = s− 2« + 45u + Osu2ddu, s4.28ad

kv = − « +
123u

5
+ Osu2d, s4.28bd

kt =
11u

5
+ Osu2d, kvt = 3 +Osud s4.28cd

for the Gell-Mann–Low functions(4.25).

D. Scaling properties

1. General scaling form

Next we solve the RGE(4.23) by using the method of
characteristics. The strategy behind this method is to intro-
duce a single flow parameter, that allows us to reexpress the
partial differential equation(4.23) as an ordinary differential
equation in terms of,. This equation then describes how the
Green functions behave under a rescaling

m → m̄s,d = m, s4.29d

of the inverse length scalem. The characteristic for the di-
mensionless coupling constantu is given by

,
dūs,d

d,
= bu„ūs,d…, ūs1d = u. s4.30d

With the exception of the characteristic fort, the remaining
characteristics are all of the same structure, viz.,

,
d ln Q„ūs,d…

d,
= q„ūs,d…. s4.31d

Here,Q is a placeholder forX, X̃, andv̄, respectively.q is a
placeholder for, respectively,g, g̃, andkv. The initial condi-

tions pertaining to Eq.(4.31) are Xs1d=X̃s1d=1 and v̄s1d
=v. The long-length scale behavior of TIP corresponds to the
limit ,→0. In this limit the RG flows to a fixed point deter-
mined by the stable valueu* of u satisfyingbusu*d=0. We
find that this value is given byu* =2« /45+Os«2d.

For the remainder of Sec. IV D we exclusively consider
dimensions less than five. We will turn to the cased=5 in
Sec. IV E. In the vicinity of the fixed pointu* the solution of
the RGE with these characteristics is fairly straightforward.
We are confronted, however, with the slight complication
that t itself is not a scaling variable as can be seen from Eq.
(4.25c). In order to diagonalize the flow equations nearu* we
switch fromt to

s = t +
kvt*

kt* − 2kv*
v2, s4.32d

wherekt* =ktsu*d, kv* =kvsu*d, and so on. It can easily be
checked thats is governed by the flow equation

,
d ln ss,d

d,
= kt* , s4.33d

i.e., thats is a true scaling variable. In the dimensions of
interest here the solutions of the characteristics for the scal-
ing variables are of power law form and we obtain

GN,Ñ„hr j,t,v,u,m… = ,sNh+Ñh̃d/2 3 ḠN,Ñshr j,s,k1,v,k2,u* ,m,d,

s4.34d

where we have omitted nonuniversal amplitude factors. The
various exponents appearing in Eq.(4.34) are given by

h = gsu*d =
88

225
« + Os«2d, s4.35ad

h̃ = g̃su*d = −
28

75
« + Os«2d, s4.35bd

k1 = ktsu*d =
22

225
« + Os«2d, s4.35cd

k2 = kvsu*d =
7

75
« + Os«2d. s4.35dd

Supplementing the solution(4.34) with a dimensional analy-
sis to account for naive dimensions we obtain the scaling
form

GN,Ñshr j,t,v,u,md = ,dN,Ñmsd−4dN+2Ñ

3 FN,Ñ„h,mr j,m−2s/,1/n,m−1v/,f/n
…,

s4.36d

where
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dN,Ñ = Sd − 4 +
h

2
DN + S2 +

h̃

2
DÑ,

and where theFN,Ñ are, up to nonuniversal amplitude factors,
universal scaling functions. The scaling exponents of the cor-
relation length and the crossover variable are

n =
1

2 − k1
=

1

2
+

11

450
« + Os«2d, s4.37ad

f =
1 − k2

2 − k1
=

1

2
−

1

45
« + Os«2d. s4.37bd

In the following we will concentrate on a path in the phase
diagram spanned by the relevant variablest and v which
approaches the tricritical pointt=v=0 asv,t. Hence, we
will neglect the crossover variablev / usuf,utu1−f!1, where
we have setm=1 for convenience. In this regime we can
write the fundamental scaling form(4.36) as

GN,Ñshr j,td = utuNb+Ñb8F
N,Ñ

± shutunr j…, s4.38d

with

b = nSd − 4 +
h

2
D =

1

2
−

17

45
« + Os«2d, s4.39ad

b8 = nS2 +
h̃

2
D = 1 −

2

45
« + Os«2d. s4.39bd

The superscript of the scaling functionsF
N,Ñ

±
corresponds to

the sign oft. Note thatj,utu−n is the correlation length.

2. Scaling behavior of various percolation observables

Now we will exploit our knowledge about the correlation
functions of the fields to extract the scaling behavior of vari-
ous observables that play an important role in percolation
theory. First we will consider the case that the process starts
with a single seed at the originr =0. Second we will look at
the case that the density of the initial state is homogeneous.

Let us start by considering clusters of a given finite sizeS,
i.e., clusters with a finite massS of the debris given that the
process started with a seed, a single agent, at the originr
=0. In principle, any reasonable initial state can be prepared
by choosing the appropriate seed densityr0sr d. In the Lange-
vin equation(3.1) this general initial condition corresponds
to an additional source terml−1qsr ,td=r0sr ddsltd. At the
level of the dynamic response functionalJ [Eq. (3.7)] such
an initial state translates into a further additive contribution
−eddrdtqsr ,tdñsr ,td. Thus, a seedqsr ,td=dsr ddstd is repre-
sented by the contribution −ñs0,0d. At the level of the qua-
sistatic HamiltonianH (3.11) such a seed is therefore repre-
sented by an additive term −s̃s0d.

Let PsSddS be the measure of the probability that the
cluster mass of the debris generated by a seed at the origin is
betweenS and S+dS. In our field theoretic formulation the
probability densityPsSd can be expressed as

PsSd =KdSE ddrssr d − SDexpfs̃s0dgL . s4.40d

For big clusters withS@1 we can expand the exponential to
first order(higher orders lead asymptotically only to sublead-
ing corrections) and obtain

PassSd =KdSE ddrssr d − SDs̃s0dL s4.41d

for the asymptotic distribution. We will return toPassSd in a
moment.

The percolation probabilityP` is defined as the probabil-
ity for the existence of an infinite cluster generated from a
single seed. HenceP` is given by

P` = 1 − lim
c→+0

E
0

`

dSe−cSPsSd

= 1 − lim
c→+0

kexp fs̃s0d − cE ddrssrdgl. s4.42d

Via expanding expfs̃s0dg we obtain the asymptotic form[34]

P` . − lim
c→+0

ks̃s0de−cMl, s4.43d

whereM =eddrssr d. The virtue of this formula is that it re-
lates the percolation probability unambiguously to an expres-
sion accessible by field theory. For actual calculations the
term exps−cMd has to be incorporated into the quasistatic
Hamiltonian. This leads to

Hc = H +E ddrcsr dssr d s4.44d

instead of the originalH. Here,csxd=c is a source conjugate
to the fields. Whereas in generalks̃l=0 if c=0 by virtue of
causality, the limitc→ +0 leads to a nonvanishing order pa-
rameterP` in the spontaneously symmetry broken active
phase. Having introducedHc, we can write

P` = − lim
c→+0

ks̃s0dlc = − G0,1s0,t,c → + 0,u,md,

s4.45d

wherek¯lc denotes averaging with respect toHc. With the
help of Eq. (4.45) and the scaling form(4.38) we readily
obtain that

P` , us− tdutub8. s4.46d

In order to examine the scaling behavior ofPsSd we can look
at its moments defined by

kSkl =E
0

`

dS SkPsSd. s4.47d

Using Eq.(4.41), our scaling result(4.38) leads to

kSkl . E sddrdkGk,1shr j,0,td , utub8−ksdn−bd. s4.48d

This tells us thatPas scales as

GENERALIZED EPIDEMIC PROCESS AND… PHYSICAL REVIEW E 70, 026114(2004)

026114-11



Passt,Sd = SnSstd = S1−tpfstSspd, s4.49d

wherenS is the number of clusters of sizeS per lattice site.
The nS play an important role in percolation theory where
they are called cluster numbers. The scaling exponents in the
scaling form(4.48) reflect the usual nomenclature of perco-
lation theory. They are given by

sp =
1

dn − b
= 1

2 + Os«2d, s4.50ad

tp =
b8

dn − b
+ 2 = 5

2 − 1
45« + Os«2d. s4.50bd

These exponents coincide with the corresponding exponents
of conventional isotropic percolation only in mean-field
theory. It follows from Eq.(4.48) that the mean cluster mass
kSl of the finite clusters scales as

kSl = Mstd = M0utu−g, s4.51d

with the exponent

g = dn − sb + b8d = 1 + 2
45« + Os«2d. s4.52d

Next we consider Green functions restricted to clusters of
given massS. In terms of the conventional unrestricted av-
erages with respect toH, these restricted Green functions
can be expressed for largeS as

CN
sSdshr j,td = kssr 1d ¯ ssr NddsE ddrssr d − Sds̃s0dlsconnd.

s4.53d

Equation(4.38) leads to the scaling form

CN
sSdshr j,td = utusN−1db+b8+dnFNshutunr j,utudn−bSd.

s4.54d

With the help of these restricted Green functions we can
write the radius of gyration(mean-square cluster radius) of
clusters of sizeS as

RS
2 =

E ddr r 2C1
sSdsr ,td

2dE ddr C1
sSdsr ,td

. s4.55d

Equation(4.54) then leads to

RS
2 = S2/Df fRstSspd s4.56d

with the fractal dimension

Df = d −
b

n
= 4 − 44

225« + Os«2d. s4.57d

We conclude Sec. IV by considering the scaling behavior
of the statistics of the debris if the initial state is prepared
with a homogeneous seed densityr0. As discussed above,
such an initial state translates at the level of the quasistatic
HamiltonianH ((3.11)) into a further additive contribution
−r0eddrs̃sr d. Our general scaling form(4.38) implies that

the correlation functions of the densitiesssr d scale in the
case of the homogeneous initial condition like

GN,Ñshr j,t,r0d = o
k=0

`
r0

k

k!
E sddr̃dkGN,Ñ+kshr j,hr̃ j,td

= utubN+b8ÑFN
±shutunr j,utub8−dnr0d. s4.58d

It is obvious that the initial seed density plays the role of an
ordering field. Hence, the Green functions do not show criti-
cal singularities as long asr0 is finite. For the homogeneous
initial condition the appropriate order parameter is given by
the density of the debris,

r = kssr dlr0
= G1,0sr ,t,r0d. s4.59d

Equation(4.58) tells us that

r = utubfr
±sutub8−dnr0d. s4.60d

In the nonpercolating phasest.0d the order parameterr is
linear in r0 for small seed density with a susceptibility coef-
ficient that diverges ast→0,

rst . 0,r0d , t−gr0, s4.61d

with the susceptibility exponentg given in Eq. (4.52). At
criticality st=0d the order parameterr goes to zero forr0

→0 as

rst = 0,r0d , r0
1/d, s4.62d

with the exponent

d =
dn − b8

b
= 1 +

g

b
= 3 + 8

5« + Os«2d. s4.63d

Finally, in the percolating phasest,0d the order parameter
becomes independent of the initial seed density in the limit
r0→0 and goes to zero witht as

rst , 0d , utub. s4.64d

Equations(4.46) and (4.64) show explicitly that the two or-
der parameters, namely, the densityr of the debris and the
percolation probabilityP`, have different exponentsb and
b8. This stands in contrast to ordinary isotropic as well as
directed percolation. As mentioned earlier, ordinary isotropic
and directed percolation are special in the sense that they
posses an asymptotic symmetry that leads to the equality of
the respective exponentsb andb8.

E. Scaling properties in five dimensions: Logarithmic
corrections

Here we will study TIP directly in five dimensions where
fluctuations induce logarithmic corrections to the leading
mean-field terms rather than anomalous exponents. First, we
will establish the general form of the logarithmic corrections.
Second, we will analyze how these corrections, to leading
order, affect the observables studied in Sec. IV D.

1. General form of the logarithmic corrections

Now we will solve the characteristics directly ford=5.
The Wilson functions stated in Eqs.(4.27) and (4.28) are
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central ingredients of the characteristics. For economic rea-
sons, we will use in the following an abbreviated notation for
the Wilson functions of the typefsud= f1u+ f2u

2+¯. For
instance, we will write Eq.(4.28a) as busud=b1u+b2u

2

+Osu3d and likewise for the other Wilson functions. Since
we are interested in the tricritical point, we setv=0 through-
out.

Solving the characteristic foru, Eq. (4.30), for «=0 yields
readily

, = ,swd = ,0expF−
1

b2w
+ Osln wdG , s4.65d

where,0 is an integration constant and where we abbreviated

w = ū. s4.66d

To leading order we obtain from Eq.(4.65) asymptotically
for ,!1

w .
1

45uln ,u
! 1. s4.67d

The remaining characteristics, Eq.(4.31) are solved via ex-
ploiting ,d/d,=bd/dw with the asymptotic result

Qswd . Q0w
q1/b2, s4.68d

where Q0 symbolizes a nonuniversal integration constant.
Having solved the characteristics, we obtain

GN,Ñshr j,td = fm,Xswd1/2gNfsm,d2X̃swd1/2gÑ

3 FN,ÑShm,r j,
tswd
sm,d2,wD s4.69d

as a formal scaling solution for the Green functions.
In the following we have to be careful about the explicit

dependence of the scaling functionsFN,Ñ on w even though
we are interested in only the leading logarithmic corrections.
This intricacy comes from the fact that rather mean-field than
Gaussian theory applies at the upper critical dimension.
Hence we must carefully distinguish between the two roles
of g, viz., its role as a dangerous irrelevant variable which
scales the fields and the parameters in the correlation and
response functions, and its role(in its dimensionless formu)
as the loop expansion parameter. Only the latter role can be
safely neglected for the leading logarithmic corrections. As
we shall see in the following, the dependence of the func-
tions FN,Ñ on w if given by

FN,Ñshr j,t,v,wd = ws1−Ñd/2fF
N,Ñ
8 shr j,t,v/Îwd + OsÎwdg.

s4.70d

To derive this result one can consider the loop-scaling of the
generating functionals of the vertex and Green functions as
was done in Ref.[32] for studying logarithmic corrections in
DP. Here we use a more direct method to determine the
dependence of the tree diagrams on the dangerous variableg.
Consider an arbitrary connected diagram withL loops, P

propagators,N externals legs,Ñ externals̃ legs,Vg vertices
of typeg, Vf vertices of typef, andV1 noise vertices propor-

tional to 1. This generic diagram contributing to the Green
function GN,Ñ satisfies the three topological conditions

L = P − Vg − Vf − V1 − N − Ñ + 1, s4.71ad

P = 3Vg + 2Vf + V1 + N, s4.71bd

P = Vg + Vf + 2V1 + Ñ. s4.71cd

Eliminating P we arrive at two equations for the number of
vertices, namely,

V1 = N − 1 +L, s4.72ad

2Vg + Vf = Ñ − 1 +L. s4.72bd

Switching from f to the scaled variablef8= f /Îg, we find

that the diagram scales withg as gsÑ−1+Ld/2 with the factor
gL/2 being determined by the loop-order of the diagram.
Upon renormalization this reasoning leads forL=0 to the
scaling form(4.70).

Knowing Eq.(4.70) we can write down the scaling form
of the Green functions with its leading logarithmic correc-
tions. From the general solution of the RGE for the Green
functions (4.69) in conjunction with the asymptotic result
(4.67) we get

GN,Ñshr j,td = ,N+2Ñuln ,u7Ñ/75−22N/225+s1−Ñd/2

3 FN,Ñsh,r j,,−2uln ,u−11/225td. s4.73d

2. Logarithmic corrections to the percolation observables

As above we will first consider the case that the process
emanates from a single local seed at the origin. Exploiting
Eq. (4.45), we find that the percolation probability has the
scaling form

P` = ,2uln ,u7/75fP`
s,−2uln ,u−11/225td, s4.74d

wherefP`
is nonzero only fort,0. Now we fix the arbitrary

but small flow parameter, so thatt−1 effectively acquires a
finite value in the scaling limit,

,−2uln ,u−11/225t , 1. s4.75d

Hence, we choose asymptotically

,2 , utuzlnutuz−11/225. s4.76d

Collecting, we obtain that

P`std , us− tdutuzlnutuz2/45. s4.77d

Next we consider the probabilityPsS,td. Using the definition
(4.48) and the general result(4.73) we obtain

Pst,Sd = ,6uln ,u43/225fP8s,−2uln ,u−11/225t,,4uln ,u22/225Sd.

s4.78d

Being interested primarily inPsS,td as a function near criti-
cality t<0 and not in the animal limitS→` with t.0, we
hold the second argument finite. Hence we choose
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,4 , S−1sln Sd−22/225. s4.79d

With these settings we find

Pst,Sd = S−3/2sln Sd2/45fPstS1/2d. s4.80d

The scaling functionfPsxd is found with the help of a simple
mean-field calculation to be proportional to exps−const
3x2das long asx is finite. Forx→` it crosses over to the
animal limit with its own independent scaling behavior. Note
that there is, at the order we are working, no logarithmic
correction associated with theS1/2 in the argument of the
scaling function. As a corollary of Eq.(4.80), we obtain the
critical behavior of the mean cluster mass,

Mstd = kSl , t−1uln tu2/45. s4.81d

Now we turn to clusters of a given sizeS. The scaling
behavior of the Green functions restricted to these clusters
takes on the form

CN
sSdshr j,td = ,N+6uln ,us43−22Nd/225

3 FNsh,r j,,−2uln ,u−11/225t,,4uln ,u22/225Sd
s4.82d

in five dimensions. From this scaling it is straightforward to
extract the radius of gyration of clusters of sizeS via the
definition (4.55). Choosing, per Eq.(4.79) leads to

RS
2 = S1/2sln Sd11/225fRstS1/2d. s4.83d

In mean-field theory, as a straightforward calculation shows,
the scaling functionfRsxd is identical to a nonuniversal con-
stant.

In the remainder of Sec. IV E we will consider the homo-
geneous initial condition. TheN-point density correlation
functions obey ind=5 the scaling form

GN,Ñshr j,t,r0d = ,N+2Ñuln ,u1/2+61Ñ/150−22N/225

3 FN,Ñsh,r j,,−2uln ,u−11/225t,

3 ,−3uln ,u−61/150r0d. s4.84d

Specifying Eq.(4.84) to N=1 andÑ=0, we obtain the scal-
ing behavior of the mean density of the debris,

r̄st,r0d = ,uln ,u181/450

3 F1,0s,−2uln ,u−11/225t,,−3uln ,u−61/150r0d.

s4.85d

For tÞ0 and small seed densityr0 it is appropriate to
choose, according to Eq.(4.75). This provides us with

r̄st,r0d = utu1/2zlnutuz17/45f r̄
±sr0utu−3/2zlnutuz−1/3d. s4.86d

The scaling functionf r̄
+sxd behaves likef r̄

+sxd,x for smallx,
and hence

r̄st . 0,r0d , r0t−1uln tu2/45 s4.87d

in this regime. Att=0, the mean density is a function ofr0
only. To obtain the logarithmic corrections for this case, we
set

, , r0
1/3uln r0u−61/450. s4.88d

From Eq.(4.85) in conjunction with Eq.(4.88) we obtain

r̄st = 0,r0d , r0
1/3uln r0u4/15. s4.89d

Lastly, the order parameter should be independent of the seed
density in the percolating phase forr0→0, i.e., the scaling
function f r̄

− of Eq. (4.86) should approach a constant in this
limit. Thus, we get

r̄st , 0d , utu1/2zlnutuz17/45 s4.90d

in this regime.

V. DYNAMIC SCALING PROPERTIES

In this section we will study dynamic scaling properties of
TdIP. To find out these properties we have to renormalize the
dynamic response functional(3.7). In comparison to the qua-
sistatic Hamiltonian(3.11), J has one additional parameter,
namely, the kinetic coefficientl. To determine the renormal-
ization of l, we have to calculate one of the dynamic vertex
functions in full time or frequency dependence. A dynamic
RGE then leads to a general scaling form for the dynamic
Green functions. This scaling form allows us to deduce the
dynamic scaling behavior of various percolation observables.

A. Diagrammatics

In order to determine the renormalization ofl, we could
calculate the frequency dependent part of any of the superfi-
cially divergent vertex functions. For convenience, we
choose to work withG1,1. Two dynamic two-loop diagrams
for the self-energy can be constructed from the diagrammatic
elements in Fig. 2. These two diagrams are shown in Fig. 10.

After Fourier transformation and some rearrangements,
we get from the diagrams the contribution

s10ad + s10 bd = ivgt−«S−
B

8
+

C

2
+

3

8
I122+

3

4
I113D

s5.1d

to G1,1, where we have not displayed various terms(those not
linear in the frequencyv) for notational simplicity.B andC
stand for the integrals

B =E
q1,q2

1

sq1
2 + 1d2sq2

2 + 1d2fq1
2 + q2

2 + sq1 + q2d2 + 3g

s5.2d

and

FIG. 10. Dynamic two-loop diagrams which provide us with the
renormalization factor of the kinetic coefficientl.

JANSSEN, MÜLLER, AND STENULL PHYSICAL REVIEW E70, 026114(2004)

026114-14



C =E
q1,q2

1

sq1
2 + 1d2sq2

2 + 1d2fq1
2 + sq1 + q2d2 + 2g

.

s5.3d

These integrals can be calculated for example by using
Schwinger parametrization(cf. the Appendix). The« expan-
sion results forB andC read

B =
4G«

2

9«
s3Î3 − pd, C =

4G«
2

3«
. s5.4d

The I
¯

contributions in Eq.(5.1) cancel and we finally get

s10ad + s10bd =
ivG«

2gt−«

3«
S2 −

Î3

2
+

p

6
D . s5.5d

B. Renormalization and renormalization group equation

The dynamic theory requires an additional renormaliza-
tion factor, sayZ8, in comparison to the quasistatic theory
due to the existence of« poles in the frequency dependent
terms. Taking into account that the dynamic fieldsn and ñ
are related to the quasistatic fieldss ands̃ via Eq. (3.10), we
introduceZ8 consistent with the renormalization scheme in
Eqs.(4.16) and (4.17) by letting

n → n̊ = Z81/2n, l → l̊ = sZ/Z8d1/2l. s5.6d

Combining Eq.(5.5) with the zero-loop part of the vertex
function G1,1 we get by applying our renormalizations

G1,1= ivFsZ8Z̃d1/2 −
u

6«
S1 +

12 − 3Î3

p
D + Osu2dG .

s5.7d

To keep the formula(5.7) simple, we have once more
dropped all terms that are not linear inv. From Eq.(5.7) we

can directly read offsZ8Z̃d1/2 to orderu. Taking into account
Eq. (4.20), this yields

Z8 = 1 +
u

«
S4 −Î3

p
−

58

15
D + Osu2d. s5.8d

The corresponding Wilson function reads

g8 = 2S58

15
−

4 −Î3

p
Du + Osu2d. s5.9d

Now we have all the information required to calculate the
Gell-Mann–Low function

z = m]mu0ln l = 1
2sg8 − gd s5.10d

for the kinetic coefficient.
By proceeding analogously to the quasistatic case we ob-

tain the dynamic RGE

FDm +
1

2
sNg8 + Ñg̃dGGN,Ñshr ,tj,td = 0. s5.11d

Here, the RG differential operatorDm is given by

Dm = m]m + lz]l + stkt + v2kvtd]t + vkv]v + bu]u.

s5.12d

C. Scaling properties

1. General scaling form

Upon using the method of characteristics we obtain the
dynamic scaling form

GN,Ñshr ,tj,td = ,dN,Ñmsd−2dN+2Ñ

3 FN,Ñsh,mr ,,zlm2tj,m−2s/,1/n,m−1v/,f/nd,

s5.13d

where

dN,Ñ = Sd − 4 +
h

2
+ zDN + S2 +

h̃

2
DÑ = Sb

n
+ zDN +

b8

n
Ñ,

s5.14ad

z= 2 +z*

= 2 −S 8

15
+

4 −Î3

p
D2«

45
+ Os«2d

= 2 − 0.0558« + Os«2d. s5.14bd

The dynamic exponentz is identical to the fractal dimension
Dmin of the minimal or chemical path,Dmin=z [33]. Near the
tricritical point sv=0d, we get from Eq.(5.13) that the re-
sponse and correlation functions of the agent at timet obey
the scaling form

GN,Ñshr j,t,td = t−Ns1+b/nsd−ÑdsfN,Ñshr /t1/zj,tt1/nsd,

s5.15d

where

ds =
b8

nz
= 1 −S11

3
−

4 −Î3

p
D «

45
+ Os«2d, s5.16ad

ns = nz= 1 +S5

3
−

4 −Î3

p
D «

45
+ Os«2d. s5.16bd

2. Dynamic scaling behavior of various percolation
observables

First we will consider the spreading of the agent emanat-
ing from a localized seed atr =0 andt=0. Later on, we will
turn to the case that the initial state at timet=0 is prepared
with a homogeneous initial densityr0.

The survival probabilityPst ,td that a cluster grown from
a single seed is still active at timet can be derived from the
field theoretic correlation functions by using[34]

Pstd = − lim
k→`

ke−kNs0dñs− tdl, s5.17d

where nowNs0d=eddrnsr ,0d. By proceeding analogously to
the static case, i.e., by incorporating the term expf−kNs0dg
into the dynamic functional, one obtains
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Pst,td = − lim
k→`

ks̃s− tdlk = − G0,1s− t,t,k = `,u;l,md,

s5.18d

where k¯lk denotes averaging with respect to the new dy-
namic functionalJk that has absorbed the source term fea-
turing k. Equation(5.15) then implies that the survival prob-
ability obeys the scaling form

Pst,td = t−dsfPstt1/nsd. s5.19d

In the percolating phasest,0d the survival probability tends
to the percolation probability for larget, Pst ,td→P`std
,utub8. Hence, the universal scaling functionfPsxd behaves

asxb8 for large values ofx.
The mean density of the agent at timet grown from a

single seed follows from Eq.(5.15) with N=Ñ=1 as

rsr ,t,td = t−1−sb+b8d/nzfsr/t1/z,tt1/nzd. s5.20d

Knowing the density of the agent, we have immediate access
to the number of infected or growth sites

Nst,td =E ddrrsr ,t,td, s5.21d

which can be viewed as the average size of the epidemic at
time t. Equation(5.20) implies that

Nst,td = thsfNstt1/nsd, s5.22d

where

hs =
g

nz
− 1 =S1

3
+

4 −Î3

p
D «

45
+ Os«2d. s5.23d

In the nonpercolating phasest.0d, the integrale0
` dtNst ,td

is proportional to the mean masskSl of the static clusters of
the debris, Eq.(4.51). The mean mass of the debris at timet,
on the other hand, is given by

Mst,td =E
0

t

dt8Nst8,td. s5.24d

For M we find the scaling form

Mst,td = th̄sfMstt1/nsd s5.25d

with

h̄s = 1 +hs =
g

ns
=

g

nz
. s5.26d

The scaling functionsfNsxd and fMsxd are regular for small
x. For x→` we learn from limt→`Mst ,td=Mstd=kSl in
conjunction with Eq.(4.51) that

fMsxd = x−gfM
+ sxnzd, s5.27ad

M0 − fM
+ syd , exps− const3 yd. s5.27bd

It follows that the number of growth sites behaves fort.0
asymptotically as

Nst,td , tnz−gexps− const3 tnztd. s5.28d

Knowing the density of the agent, we are in the position to
calculate the mean square distanceR2st ,td of the infected
individuals from the original seed by using

R2st,td =
1

2dNst,td E ddrr 2rsr ,t,td. s5.29d

We obtain the scaling behavior

R2st,td = tzsfRstt1/nsd, s5.30d

where

zs =
2

z
= 1 +S 8

15
+

4 −Î3

p
D «

45
+ Os«2d. s5.31d

Mendeset al. [35] proposed a generalized hyperscaling
relation which translates in our case to

2S1 +
b

b8
Dds + 2h̄s = dzs. s5.32d

From Eqs.(4.51), (5.19), (5.25), and(5.29) we confirm that
the spreading exponents indeed satisfy this relation. This is
not a surprise because the hyperscaling relation(5.32) is
based only on the general scaling form(5.15).

Finally, we consider the scaling behavior of the time de-
pendent mean density of the agentrst ,t ,r0d=knsr ,tdlr0

for
t.0 if the initial state at timet=0 is prepared with a homo-
geneous initial densityr0. As mentioned earlier, this initial
condition corresponds to a source termqsr ,td=r0dstd in the
Langevin equation(3.1). This source term translates into a
further additive contribution −r0eddrñsr ,0d to the dynamic
functional(3.7). In a theory like ours, where the perturbation
expansion is based only on causal propagators and where no
correlators appear, no initial time UV infinities are generated.
Therefore, no independent short time scaling behavior
[27,31] arises andñsr ,0d scales asñsr ,td. Thus, we find,
analogous to Eq.(4.58), that the dependence of the correla-
tion functions onr0 can be expressed as

CNshr j,t,t,r0d = t−s1+b/nzdNfNshr /t1/zj,tt1/nz,r0t
sdn−b8d/nzd.

s5.33d

In particular, we obtain for the mean density of the agent

rst,t,r0d = t−1−b/nzfrstt1/nz,r0t
sdn−b8d/nzd. s5.34d

At criticality st=0d it follows from this equation that the
agent density first increases in the universal initial time re-
gime,

rst,r0d , r0t
hs. s5.35d

Then, after some crossover time, it decreases,

rst,r0d , t−1−b/nz, s5.36d

with the critical exponent

1 +
b

nz
=

3

2
− S107

3
−

4 −Î3

p
D «

90
+ Os«2d. s5.37d
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The time dependence of the order parameter, the density
of the converted individuals

r̄st,t,r0d =E
0

t

dt8rst8,t,r0d, s5.38d

follows from Eq.(5.34):

r̄st,t,r0d = t−b/nzf r̄stt1/nz,r0t
sdn−b̃d/nzd. s5.39d

This scaling form goes exponentially to the time independent
scaling form(4.60) in the large time limit. Equation(5.39)
implies

r̄st,0,r0d , r0t
u s5.40d

for the initial time order parameter scaling at criticality. The
scaling index appearing here is

u =
g

nz
. s5.41d

D. Logarithmic corrections in five dimensions

Here we are going to investigate how logarithmic correc-
tions influence the dynamic scaling behavior ind=5. We will
briefly explain how the general considerations on logarithmic
corrections in the quasistatic theory given in Sec. IV E1 have
to be augmented and modified in the dynamic theory. Then
we will derive the logarithmic corrections for all of the dy-
namic observables studied above.

1. General form of the logarithmic corrections

Compared to the quasistatic theory,X8 takes on the role of
X and there is an additional flowing variable, viz.,l. BothX8
andl have characteristic equations of the form given in Eq.
(4.31) and hence the flow of these variables ind=5 is de-
scribed by Eq.(4.68). The dynamic scaling form(5.13) be-
comes

GN,Ñshr ,tj,td = sm,d3N+2ÑX8swdN/2X̃swdÑ/2

3 FN,ÑXhm,r ,sm,d2lswdtj,
tswd
sm,d2,wC

s5.42d

in five dimensions. Since we are interested solely in the lead-
ing logarithmic corrections, it is sufficient for our purposes
to account for the explicit dependence of the scaling func-
tionsFN,Ñ on w to zero-loop order; see Eq.(4.70). Using the
asymptotic result(4.67) we obtain

GN,Ñshr ,tj,td = ,3N+2Ñuln ,u7Ñ/75+sa−22/225dN+s1−Ñd/2

3 FN,Ñsh,r ,,2uln ,uatj,,−2uln ,u11/225td,

s5.43d

wherea is the abbreviation of

a =
1

45
S 8

15
+

4 −Î3

p
D = 0.0279. s5.44d

As in Sec. V C 2 our emphasis here is on the time depen-
dence of various measurable quantities. Hence we fix the
arbitrary flow parameter, as long aslututø1 by setting

,2 , t−1sln td−a. s5.45d

In the contrary caselutut@1 we must use the choice(4.76).

2. Logarithmic corrections to dynamic percolation
observables

As above we will first consider the initial condition that
the process starts from a single local seed at the spacewise
and timewise origin. The first quantity that we are going to
consider is the survival probabilityPst ,td. Utilizing Eq.
(5.18) in conjunction with Eq.(5.42) we obtain

Pst,td = ,2uln ,u7/75YPs,2uln ,uat,,−2uln ,u−11/225td.

s5.46d

The choice(5.45) then leads to

Pst,td = t−1sln tdaPfP„ttsln tdat
…, s5.47d

with the exponents

aP =
7

75
− a =

1

45
S11

3
−

4 −Î3

p
D , s5.48ad

at = a −
11

225
=

1

45
S−

5

3
+

4 −Î3

p
D . s5.48bd

Hence, we have at criticality and near criticality withlutut
!1

Pst,t < 0d , t−1sln tdaP. s5.49d

The asymptotic behavior for large times below and above
criticality, respectively, is given by

Pst,t . 0d , tuln tu2/45exps− const3 ttuln tuatd

s5.50ad

and

Pst,t , 0d − P`s− utud , utuzlnutuz2/45

3exps− const3 tutuzlnutuzatd.

s5.50bd

Next we look at the mean density of the active particles at
time t. Upon specializing the general scaling form(5.43) to

N=Ñ=1 we find

rsr ,t,td = ,5uln ,uaNfrs,r ,,2uln ,uat,,−2uln ,u−11/225td
s5.51d

with

aN = a −
1

225
=

1

45
S1

3
+

4 −Î3

p
D . s5.52d

From the mean density we obtain the mean number of agents
(5.21) at timet by integrating overr , and choosing(5.45) for
t<0,
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Nst,td = uln tuaNfN„ttsln tdat
…. s5.53d

For the mean mass of the debris at timet as defined in Eq.
(5.24) we get

Mst,td = tuln tuaNfM„ttsln tdat
…. s5.54d

Mst ,td crosses over fort.0 and t→` to a function that
approachesMstd=kSl, Eq. (4.81), exponentially. The mean
square distanceR2st ,td of the agents from the origin is
found to behave as

R2st,td = tsln tdafR„ttsln tdat
…. s5.55d

Finally, we will consider the homogeneous initial condi-
tion. The analog of Eq.(5.33) in five dimensions with the
flow parameter, still arbitrary reads

CNshr j,t,t,r0d = ,3Nuln ,usa−22/225dN+1/2

3 FNsh,r ,,2uln ,uatj,,−2uln ,u−11/225t,

3 ,−3uln ,u−61/150r0d s5.56d

where we have used Eq.(5.43). From Eq.(5.56) we readily
obtain the critical behavior of the mean density of the agents
by settingN=1 and fixing, for not too larget via Eq.(5.45),

rst,t,r0d = t−3/2sln tdarfr„ttsln tdat,r0t
3/2sln td−ar

0
…,

s5.57d

where

ar =
181

450
−

a

2
=

1

90
S107

3
−

4 −Î3

p
D , s5.58ad

ar
0 =

61

150
−

3a

2
=

1

30
S35

3
−

4 −Î3

p
D . s5.58bd

At criticality, the scaling function is expected to behave as
frs0,yd,y for y!1. Thus, the agent density increases ini-
tially,

rst,0,r0d , r0sln tdaN. s5.59d

After some crossover time it decreases as

rst,0,r0d , t−3/2sln tdar. s5.60d

The mean density of the debris at timet can be extracted
without much effort by integrating over Eq.(5.57). This
yields

r̄st,t,r0d = t−1/2sln tdar f̄r„ttsln tdat,r0t
3/2sln td−ar

0
…

s5.61d

if t is not too large. In the caser0t
3/2→` we have to use

,3 , r0uln r0u−61/150, s5.62d

which implies especially at criticality

r̄st,t = 0,r0d = r0
1/3uln r0u4/15f̄r8str0

2/3uln r0u−2ar
0/3d.

s5.63d

The scaling functionf̄r8sxd exponentially approaches the sta-
tionary density(4.89).

VI. CONCLUDING REMARKS

In summary, we have generalized the usual GEP by intro-
ducing a further state in the lives of the individuals governed
by the process. Our GGEP has a multidimensional phase
diagram featuring two surfaces separating endemic and pan-
demic behavior of the epidemic. One of the surfaces is a
surface of first order phase transitions whereas the other sur-
face consists of critical points representing second order tran-
sitions. The two surfaces meet at a line of tricritical points.

The second order phase transitions belong to the univer-
sality class of dynamic isotropic percolation. In the vicinity
of these transitions, the asymptotic time limit of the GGEP is
governed by the critical exponents of the usual percolation.
The debris left behind by the process forms isotropic perco-
lation clusters.

Mainly, we were interested in the tricritical behavior of
the GGEP. We set up a field theoretic minimal model in the
form of a dynamic response functional that allowed us to
study in detail the static and the dynamic scaling behavior of
the universality class of tricritical dynamic isotropic percola-
tion. In particular we calculated the scaling exponents for
various quantities that play an important role in percolation
theory. As expected, these exponents are different from the
exponents pertaining to dIP. For example, we computed the
exponentsb andb8, respectively, describing the two differ-
ent order parameters, viz., the density of the debris and the
percolation probability. Whereasb and b8 are identical in
dIP, they are different in TdIP. Although TdIP is described by
scaling exponents different from those of the usual percola-
tion, we learned that its spreading as well as the statistics of
its clusters behave in many ways like conventional dynamic
percolation. For example, TdIP has meaningful cluster num-
bers, fractal dimensions, etc. Thus, we propose to refer to the
static properties of the TdIP as tricritical isotropic percola-
tion.

The surface of first order transitions is characterized by a
compact cluster growth, i.e., the fractal dimension of the
clusters is identical to the their embedding dimension. We
hope that our findings trigger numerical work with the aim of
verifying the predicted first order percolation transitions. A
promising strategy that avoids a cumbersome detection of
jumps in the order parameters might be to measure directly
the fractal dimension of clusters near the first order surface.
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APPENDIX: CALCULATION OF THE PARAMETER
INTEGRAL I „a,b; c…

In this appendix we sketch our calculation of the param-
eter integralIsa,b;cd defined in Eq.(4.6). Most of the inte-
grals that have to be performed in calculating the two-loop
diagrams can be derived fromIsa,b;cd simply by taking
derivatives with respect to the parametersa, b, and c. The
integralsB and C, which occur in the dynamic calculation
and cannot be extracted fromIsa,b;cd by taking derivatives,
can be calculated by similar means asIsa,b;cd.

In the following we use the so-called Schwinger param-
etrization which is based on the identity

1

An =
1

GsndE0

`

dstn−1exps− Asd, Ren . 0. sA1d

In this parametrization, Eq.(4.6) takes the form

Isa,b;cd =E
q1,q2

E
0

`

ds1ds2ds3s3exph− s1fq1
2 + ag

− s2fq2
2 + bg − s1fsq1 + q2d2 + cgj. sA2d

A completion of squares in the momenta renders the momen-
tum integrations straightforward. We obtain

Isa,b;cd =
1

s4pddE
0

`

ds1ds2ds3s3
exps− s1a − s2b − s3cd
fs1s3 + s2s3 + s1s2gd/2 .

sA3d

Changing integration variables,s1→ tx, s2→ ts1−xd, ands3

→ tz, and carrying out thet integration gives

Isa,b;cd =
Gs4 − dd

s4pdd E
0

`

dzE
0

1

dx
z

fz+ xs1 − xdgd/2

3fax+ bs1 − xd + czgd−4. sA4d

The remaining integrations can be simplified by lettingz
→ sz−1−1dxs1−xd. After this step, which leads to

Isa,b;cd =
Gs4 − dd

s4pdd E
0

`

dzE
0

1

dxx2−d/2s1 − xd2−d/2

3z1−d/2s1 − zdfaxz+ bs1 − xdz

+ cxs1 − xds1 − zdgd−4, sA5d

one sees easily that the remaining integrations are finite at
the upper critical dimension. Hence, they can be conve-
niently evaluated directly atd=5. An « expansion of the
gamma function

Gs4 − dd = −
Gs1 + «/2d2

«
+ Os«0d sA6d

finally leads to the result forIsa,b;cd stated in Eq.(4.7).
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