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The renowned general epidemic process describes the stochastic evolution of a population of individuals
which are either susceptible, infected, or dead. A second order phase transition belonging to the universality
class of dynamic isotropic percolation lies between the endemic and pandemic behavior of the process. We
generalize the general epidemic process by introducing a fourth kind of individuals, viz., individuals which are
weakened by the process but not yet infected. This weakening gives rise to a mechanism that introduces a
global instability in the spreading of the process and therefore opens the possibility of a discontinuous transi-
tion in addition to the usual continuous percolation transition. The tricritical point separating the lines of first
and second order transitions constitutes an independent universality class, namely, the universality class of
tricritical dynamic isotropic percolation. Using renormalized field theory we work out a detailed scaling
description of this universality class. We calculate the scaling exponents éneapansion below the upper
critical dimensiond,=5 for various observables describing tricritical percolation clusters and their spreading
properties. In a remarkable contrast to the usual percolation transition, the expgremd®’ governing the
two order parameters, viz., the mean density and the percolation probability, turn out to be different at the
tricritical point. In addition to the scaling exponents we calculate for all our static and dynamic observables
logarithmic corrections to the mean-field scaling behaviad.at5.
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I. INTRODUCTION The universal properties of DP and dIP are well known

The formation and properties of random structures havdeday thanks to numerous studies of the SEP and GEP, re-
been a major theme in statistical physics for many years. IgPectively. Relatively little is known, on the other hand, as to
the formation of such structures obeys local rules, these provhether and under what modifications these stochastic
cesses can often be expressed in the language of populati@fowth processes allow for first order phase transitions be-
growth. It is well known that two particular growth processestween their endemic and pandemic states, and, by the same
lead to random structures with the properties of percolatiorioken, for tricritical behavior at the phase-space boundary
clusters. The so called simple epidemic proo&EP leads between first and second order transitions. In the context of
to directed percolatiotDP) [1-4]. The SEP is also known as DP, these questions where addressed to some extent by Oht-
an epidemic with recovery, the Gribov proc¢Sg], the sto-  suki and Keyeg$20]. In this paper we will study this intrigu-
chastic version of Schlégl’s first reactii,g], or in elemen-  ing topic in the context of dIP by generalizing the famous
tary particle physics as Reggeon field thef@®y11]. The so GEP.
called general epidemic proce€SEP) [12—14, also known The standard GEP, assumed for simplicity to take place on
as an epidemic with removal, generates isotropic percolatiof lattice[15], can be described with the help of the reaction
clusters[15-18, and models therefore the universality classscheme
of dynamic isotropic percolatiodIP). .

Epidemic models like the SEP and the GEP are relevant S(n) + X(m)— X(n) + X(m), (1.19
for a wide range of systems in physics, chemistry, biology,
and sociology. Undoubtedly, the potential of such simple N
mpdels has its I|.m|tat|0ns because they rely on strong sim- X(n)—E(n), (1.1b
plifying assumptions such as the homogeneity of the sub-
strate[19], isotropy of the infections, immobility of individu- with reaction ratek andX\. S, X, andE, respectively, denote
als, and so on. However, the transition between populatiosusceptible, ill, and dea@r immuneg individuals on nearest
survival and extinction of these processes is a nonequilibneighbor sitesn and m. A susceptible individual may be
rium continuougsecond ordérphase transition phenomenon infected by an ill neighbor with probabilityc [reaction
and hence is characterized hpiversalscaling laws which  (1.18]. By this mechanism the diseagbenceforth also
are shared by entire classes of systems. Near these transalled the agentspreads diffusively. Ill individuals die with
tions, simplistic epidemic models like the SEP and the GERa probability\ [reaction(1.1b]. There is no healing of in-
are of great value, because they are powerful workhorses tected individuals and no spontaneous infection. In a finite
study the mutual properties of their entire universality classsystem the manifold of states without any infected individual
which also should include more realistic models. is inevitably absorbing. Whether a single infected site leads
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to an everlasting epidemic in an infinite system depends oin the enlarged three-dimensional phase space spanned by
the ratiox/\. With \ fixed there is a certain value=«. such  u, and v with fixed \, there exists a critical surface associ-
that for all x> k. an eternal epidemita pandemigzoccurs. ated with the usual continuous percolation transition and a
The probabilityP(«) for the occurrence of a pandemic as asurface of first order transitions characterized by a finite
function of x goes to zero continuously at the critical point jump in the probabilityP(«,«,v) for the occurrence of a

k.. The behavior of the model near this critical point is in the pandemic. These two surfaces of phase transitions meet at a
universality class of dIP. line of tricritical points.

Of course, one can conceive many alterations of the GEP. The focus of this paper lies on the universal properties of
Some modifications will lead to models which still belong to the GGEP near this tricritical line. By using the methods of
the dIP universality class whereas other alterations will profenormalized field theory we work out a scaling description
duce models belonging to other universality classes. As apf the universality class of tricritical dynamic isotropic per-
example of the latter, one might think of mobile susceptiblecolation (TdIP) to which the tricritical GGEP belongs. We
or immune individuals which, say, diffuse through space.study a multitude of static and dynamic observables that play
The resulting models are reaction-diffusion type modelsmportant roles in percolation theory. In particular we calcu-
which have nothing to do with dIl21]. We are not inter- late the critical exponents describing the scaling behavior of
ested in this kind of alteration. Rather, we are interested irthese observables below five dimensions as well as logarith-
modifications of the GEP that preserve the dIP universalitymic corrections to the mean-field scaling behavior in five
class and which, for certain parameter values, allow for tri-dimensions.
criticality and first order percolation transitions. To be more The outline of our paper is as follows. In Sec. Il we con-
specific, we are interested in the most relevant mechanismsider the GGEP in a mean-field theory. As the main result of
leading to tricritical and first order dIP. In spirit our model is Sec. I, the mean-field analysis will reveal the structure of the
closely related to the canonical model for tricriticality in phase diagram. With the aim of studying the effects of fluc-
equilibrium systems, viz., thé* model with an additiona$®  tuations, we condense the principles defining TdIP into a
term where the free energy density is of the fofmr¢? field theoretic model in Sec. Ill. In Sec. IV we work out the
+0,0°+0s® [22]. If g, is positive then higher order terms scaling properties of static aspects of TdIP. Section V treats
including the ¢® term are irrelevant and one has in mean-the dynamic scaling properties. Concluding remarks are pro-
field theory a second order transition whepasses through vided in Sec. VI. There is one Appendix in which we sketch
zero. Otherwise, however, one has an instability and highethe calculation of a parameter integral that is helpful in com-
order terms are required for stabilization, of which #&  puting Feynman diagrams.
term is the most relevant one. Fgy<<0 one has a first order
transition at a critical value of that depends o, and gg
and the pointr=g,=0 constitutes a tricritical point. Our Il. MEAN-FIELD THEORY
model to be defined in the next paragraph is such that it
introduces a similar instability in the GEP and via this insta-
bility it allows for tricriticality and first order percolation. In
its field theoretic description our model features, compare
to the standard GEP, an additional higher order term whic
becomes the most relevant stabilizing term when the usual . NN(n)

GEP coupling vanishes. SNt == (k+w)Sn,t) 2 X(m,b), (2.19

Our modification of the GEP can be defined in simple m
terms. The basic idea is to enrich the reaction schéb
by introducingweakindividuals Y. Instead of being infected . NN(n)
right away by an ill neighbor, any susceptible individual may Y(n,t) =[uS(n,) - pY(n,H)] 2 X(m,t), (2.1b
be weakened with a reaction rateby such an encounter. m
When the disease passes by again, a weakened individual is

A mean-field description of the GGEP can be formulated
by treating the reaction equatioffs1) and(1.2) as determin-
istic equations without fluctuations. This deterministic ap-
froximation leads to the system of differential equations

more sensitive and gets sick with a rate . In the follow- . NN
ing we refer to this model as the generalized GEREP. X(n,0) = [xS(n,B) + pY(n,H] X X(m,1) = AX(n,b),
In addition to the reactiongl.l), the GGEP is described by m
the reactions (2.19
“ .
S(n) + X(m)—Y(n) + X(m), (1.29 E(n,t) =AX(n,t) (2.10
governing( t)he dynamics of the different kinds of individuals.
v NN(n . .
Y(n) + X(m)—X(n) + X(m). (1.2b Here,X ™" denotes summation over the nearest neighbors

of n. At each lattice site there is the additional constraint
As we go along, we will show that the occurrence of the EX+V4+E=
weak individuals gives rise to an instability that can lead to a StX+Y+E=1. 22
discontinuous transition and compdEiden[23,24) growth  Thus,S, X, Y, andE can be interpreted as the probability of
of the epidemic ifv is greater than a critical valug,(«,u).  finding the corresponding state at a site Note that the
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processes can proceed only at places where the probability to T

find ill individuals in the neighborhood is not zero. We use A

the canonical initial condition that all sites of the initial state /
are susceptible except for the site at the origin, which is ill, ;
Xo(N)=8, 0 and Yo(n) =Eq(n)=0.

Equationg2.19 and(2.1b) are readily integrated. We ob- Spinodal c';ggsover
tain

/

‘/.
tricritjcal point .~

NN(n) & = percolation f
S(n,t) = So(n)exp<— p 2 E(m,t)) (2.3 compact clusters| fractal clusters
m
and FIG. 1. The mean-field phase diagram.
SN, +(p=1)Y(n,t) =[uS(n) + (p = ) Yo(n)]
NN(n) " (E)/Z2 < [pv- k(p+ v)]exd - zE max(p,v)]. (2.8
xexpl v 2 E(m't)), With f'/(E)<0 for E>1 and f''(0)/2=pv—«(p+v) we
m therefore find
(2.4 111

where we have definepl=«+ . The time scale. has been P > ;+ > K < K¢ (2.9

set to unity for simplicity. Equatiori2.1) together with the
constraint(2.2) leads finally to the mean-field equation of as the necessary and sufficient conditions for the existence of

motion of the GGEP, a second locally stable solutioB>0 in addition toE=0
NN() with a discontinuous transition between the two. The line of
: p—K tricritical points where the first and the second order transi-
E(n)=1-EnY- p- Bt %’ E(m,p tions meet in thex-p-v phase space is determined byx1/
=1/p+1llv=z

NN(r) In the following we focus on the phenomena arising near

K—V
+ e Vexp(—p > E(m,t)) S). (2.9 the tricritical line. In this region of the phase spagé, t) is,
m except for a microscopic region around the origim0 of the
In the asymptotic regimén|,t— o one can neglect time and position space, small and slowly varying. Hence, we may
space dependence in E@.5 and use the approximation approximate Eq(2.5) by the deterministic reaction-diffusion
NN E(m,t) ~zE(n, 1), z being the coordination number of €quation
the lattice. Hence the asymptotic valuestfare the solu-

- f
tions of the equation of state E(x,t) = DVE(x,t) — \| 7E(X,t) + EE(x,t)2 + gE(x,t)3 ,
E=2""1-e»H+ “(1-e%F)=:f(E). (2.6 (2.19
p-v p-v

whereD = ka?, with a being the lattice constant=1-x/ x,
By setting p=«, corresponding tou=0, one obtains the f=kpu(llp+1/v-1/k)/«%, —and g=[pv(p+v+k)—«(p
equation of state of the usual GEE5] +v)?)/ k2=~ pvl K. As a consequence of E(2.1d) we have

2.7) the constrainE(x,t)=0.

Holding the positive coupling constant, Eq¢2.10) com-
with k=x.=1/z determining the second order phase transiprises only two tunable parameters, vizandf, and hence
tion corresponding to ordinary isotropic percolation. Forthe dimensionality of the phase diagram is reduced to two.
k<k¢ EQ. (2.7 has only the solutiorE=0, which means As follows from the different types of solutions of E@.10
that the disease does not percolate, i.e., it is endemic. In tHe be discussed in a moment, this two-dimensional phase
other casex> k., a stable solutiorE>0 arises, signaling diagram features a line of second order transitidnkne), a
the percolative pandemic character of the disease. Thedgme of first order transitions, and a tricritical point deter-
types of solutions exist also in the full equation of st@®). mined by r=f=0 separating the two lines of transitions. In
Using k<p, one demonstrates easily th&tE) increases addition, there are two spinodal lines. The entire phase dia-
monotonically from zero to one in the intervakE<.,  gram is depicted in Fig. 1.
Thus,E=0 is always a solution of Eq2.6). It follows from Equation(2.10 has, in addition to the trivial solutiok
the equation of motiori2.5) that only solutions of Eq2.6) =0, which is stable forr>0, a nontrivial locally stable sta-
with f'(E)<1 are stable. Becaugé(0)=z«, a stable perco- tionary homogeneous solutide=A with
lating solutionE>0 exists always fok > «.. The existence P v Ty
of more than one nontrivial solution requi?es necessarily that A=(\9f*/4 - 697~ 3f/2), (2.1D
f”’(E)=0 at least for one valuE>0. From Eq.(2.6) we  which is physical only ifA>0. Forf>0 one has therefore a
derive the inequality continuous transition fromE=0 (7>0) to E=A=2|7/f

E=1-¢*F
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(7<0). However, forf <0 there is a certain value=74 be-  identified through physical insight into the nature of the criti-
tween the spinodals=3f?/8g and =0 for the discontinuous cal phenomenon. Hence, our dynamic response functional
transition fromE=0 to E=A. The values ofry may be deter- stays in full analogy to the Landau-Ginzburg-Wilson func-
mined by studying a traveling wave solution of the equationtional and provides a reliable starting point for the field theo-
of motion (2.10 that describes the infection front of a big retic method.

expanding sherical cluster of the epidemic. Such a solution is

given by A. Langevin equation
E(x,t) = A{1 - tanfib(x — vt)]}/2, (2.123 The essence of isotropic percolation processes can be
summarized by four statements describing the universal fea-
vbA tures of the evolution of such processes on a homogeneous

X(x,t):E(x,t) = (2.12b substrate. Denoting the density of the ageike infected

- 2
2{coshb(x - vt)]} individuals by n(r ,t) and the density of the debrithe im-

with mune or dead individualsvhich is proportional to the den-
sity of the weakened substrate byr,t), these four state-
b=/ L= /@(\,er 2) ments read:
48D ' 49 ' (i) There is a manifold of absorbing states with:0 and

(2.13 corresponding distributions @f depending on the history of
n. These states are equivalent to the extinction of the epi-
The conditionX(x,t) =0 requiresy = 0. The first order tran- demic.
sition from E=0 to E=A at 74 is therefore defined by the (i) The substrate becomes activatedected depending
phase equilibrium condition=0, leading to on the density of the agentnd the density of the debris.

5 This mechanism introduces memory into the process. The
:f__ (2.14) debris ultimately stops the disease locally. However, it is

39 possible that the activation is strengthened by the debris

through some mechanis(sensitization of the substrate
(iii) The processgthe diseasespreads out diffusively. The
agents(the activated substrgteoecome deactivatedcon-
lll. FIELD THEORETIC MODEL verted into debrisafter a short time.

(iv) There are no other slow variables. Microscopic de-
grees of freedom can be summarized into a local noise or
Langevin forcel(r ,t) respecting the first statemefite., the
noise cannot generate agents

Td

E jumps atr=174 from zero to the value|2/g.

In this section we will derive a dynamic response func-
tional [25-27 for the GGEP based on very general argu-
ments alluding to the universal properties of TdIP. First we
d'St'”. th(_e basic prmuples of percolation processes a_lllowmg The general form of a Langevin equation resembling
for tricritical behavior. Next, we cast these principles into thethese statements is ai b

. ) . . given by
form of a Langevin equation. Then we refine the Langevin
equation into a minimal field theoretic model. A 1h=V2n+R(n,m)n+ ¢, (3.13

As an alternative avenue to a field theoretic model for the
GGEP one migtht be tempted to use the so-called “exact” t
approach which, as a first step, consists of reformulating the m(r,t) = )\J n(r,t")dt’, (3.1b
microscopic master equation for the reacti¢hd) and(1.2) 0
asa _boso_nic field theqry on the lattice. The ”eXt_af_‘d inOt_a\llvhereA is a kinetic coefficient and the Gaussian noise cor-
step in this approach is to take the continuum limit. Albeit relation reads
the “exact” approach with a naive continuum limit leads to a
consistent dynamic functional for the GGE#fter deleting L)’ ) =2 1Q(n,mn(r, ) 8(r —=r") st —t’)
several irrelevant termsthis approach must be cautioned _ , ,
against. Strictly speaking, one has to use Wilson’s statistical =\ an(r HV2Sr —r )t -t')
continuum limit[28] in the renormalization theory of critical + Q' (n,mn(r,tHn(r,t")or —r')y+ ---.
phenomena. This procedure consists of successive coarse (3.2
graining of the mesoscopic slow variabl@sder parameters '
and conserved quantities as functions of microscopic degredshe first row in Eq.(3.2) represents time-local reaction
of freedom), the elimination of fluctuating residual micro- noise. The second row describes noise originating from dif-
scopic degrees of freedom, and a rescaling of space and timieision and the last row shows an example of possible time-
In general, microscopic variables dot qualify as order pa- nonlocal noise(quenched noigethat may be acquired
rameters. Alarming examples are the pair contact processéisrough random disorder or through the elimination of mi-
(PCP and PCPP where a naive continuum limit of the mi- croscopic slow variables, e.g., fluctuations of the debris. The
croscopic master equations leads to untenable critical modstructure of the three terms is so that they respect the absorb-
els. Therefore, we devise our field theoretic model representing state condition. Of course many further contributions to
ing the TdIP universality class using a purely mesoscopidEg. (3.2) are conceivabléhence the ellipsis in the third row
stochastic formulation based on the correct order parameteiscluding non-Markovian and also non-Gaussian noise. We
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will see below that all these terms turn out to be irrelevantdynamic percolatiorf16,17. As in all models with an ab-
and that only the simplest form of reaction noise contributesorbing state transition, the functiondl includes a redun-
the minimal field theoretic model. dant variable which has to be removed before any applica-
The dependence of the ra®én,m) on the density of the tion of relevance-irrelevance arguments since it has no
debrism(r ,t) describes memory of the process mentioneddefinite scaling dimension. This redundant variable is con-
above. We are interested primarily in the behavior of thenected with the rescaling transformation
process close to the tr.icritical point, whareandm are small n—obn fi—b W a— ba, (3.5
allowing for polynomial expansion®(n,m)=-7—an-fm
—gn?/2+--, Q(n,m)=vy+---, and Q'(n,m)=vy'+---. The
justification for the truncation of the expansions will be
given later by ir relevance-irrelevance arguments. As long as (3.5D

f>0, the second order tergn of the rateR is irrelevant  which leaves.7 invariant. Exploiting this invariance, we
near the transition point and the process models ordinanpay sety=1 which fixes the redundancy. Of course, this is
dynamic isotropic percolatiofil6,17. We permit both signs  jystified only if y is a finite positive quantity in the region of
of f so that our model accounts for sensitizatigreakened jnterest of the phase diagram.

a—bla, f—Dbf, g— b_zg, vy— by,

substratgand allows for compaatEder) spreading. Conse-  For the steps to follow, we need to know the naive dimen-
quently we need the second order term for stabilization pursjons of the constituents of’ after the removal of the re-
poses, i.e., to limit the density to finite values. dundant variable. As usual, we introduce a convenient exter-

nal length scale.™ so thatr ~ u~* and\t~ 2. Exploiting
the fact that7’ has to be dimensionless, we readily find

A~p? n~p®? m~ (3.63

B. Dynamic response functional

In order to apply the renormalization groy®G) and
field-theoretic method$29,3Q, it is convenient to use the 2 6-d
path-integral representation of the underlying stochastic pro- Tps T ga
cessn(r,t) [25-27. With the imaginary-valued response
field denoted byn(r,t), the generating functional of the
Green functiongconnected response and correlation func-The highest dimensiod at which any of the finite and posi-

260, (3.6b

a~u*t a~u? oy~ (3.60

tions) takes the form tive couplings becomes margin@cquires a vanishing naive
dimension corresponds to the upper dimensidp of the
W[Hﬁ]ﬂnfD[’ﬁ nJexpi- JTR n]+fddrfdt(—ﬁn theory. This dimension separates trivial mean-field critical
’ ’ ’ behavior ford>d, from nontrivial behavior in the regime
+HF)L. (3.3 where d<d. and where the relevant variableis small.

Thus, if f is finite and positive it follows thad.=6. Theng,

The generating fielti(r ,t) corresponds to an additive source a, y’, and a have negative naive dimensions and are there-
term for the agent in the equation of motit®1). Therefore, fore irrelevant. The corresponding terms in the response
the response function defined by a functional derivative witHfunctional (3.4) vanish at the critical fixed point, and the
respect toH(r,t) describes the influence of a seed of theresponse functional displays the asymptotic symmetry
agent at(r ,t). The dynamic functional/[fi,n] and the func- & (r ,t) < ~f2m(r,~t) [16]. The resulting response func-
tional measureD[,n]«Il,  [dA(r,t)dn(r,t)/2mi] are de- tionalis that of the GEF16,17.
fined using a prepoir(to) discretization with respect to time ~ However, iff is zero, as it is at the tricritical point, we
[27]. The prepoint discretization leads to the causality rulemust useg to fix the upper critical dimension which leads to
6(t<0)=0 in response functions. This rule will play an im- dc=5. The dimensions od, ¥, anda are negative nea.
portant role in our diagrammatic perturbation calculation be-Thus, diffusional and quenched randomness of the noise is
cause it forbids response propagator lotgee beloy. Note !rrel_gvant here as itis for the GEP. D!mensmnal analysis also
that the path integrals are always calculated with the initiajustifies the truncation of the expansionsffQ, andQ’, as
and final conditions\(r , =) =RA(r ,)=0. WeII.as the el|m|nat|on of othgr terms. All higher order terms

The stochastic process defined by E¢s1) and (3.2 &€ irrelevant in the renormalization group approach because
leads via the expansions B Q, andQ’ to the preliminary they carrying anegativenaive dimension neaf=d.. Collect-

dynamic response functional ing, we obtain the dynamic response functional
— | qd -1, _p2 9. L
j:fd%{)xjdt{ﬁ()(lat—vh r+an+fm+gm2)n j_fd r)\fdfh()\ 4=V +T+fm+2mz 2n>n
y y 2 30
- 5”?‘2 - a”(Vﬁ)z] - 5{7\ f dfﬁn} - (3.4 as our minimal field theoretic model for the TdIP universality

class. We shall see as we move along, indicating the consis-
As we have remarked above, the term proportiona thay  tency of our model, that the proper elimination of IR irrel-
be neglected only if the couplinigis positive definite. In this  evant terms has led to an UV renormalizable theory at and
case EQ.3.4) reduces to the response functional of usualbelow five dimensions.

026114-5



JANSSEN, MULLER, AND STENULL PHYSICAL REVIEW E70, 026114(2004)

=Gl :> =X —<4— =G(q) > =1

tl

//
<—t/ = 02f0(1)  —— = —Ngb(t)8(t — t')
N N
FIG. 2. The diagrammatic elements implied in the dynamic
functional 7.

FIG. 3. The diagrammatic elements implied in the quasistatic

) Hamiltonian.
Note that, contrary to dIP, the functioné.7) does not

have an asymptotic symmetry that relates the two fields malization do we have to resort to the dynamic response

and n. Thus, these fields will get independent differemfunctionalj Taking the quasistatic limit amounts to switch-
anomalous dimensions leading to two different order param- ) 9 4

eter exponents ing the fundamental field variable from the density of the
P ’ . . agents to the density of the debrig(r):=m(r,»)

Before we go on, we extract the diagrammatic eIements_)\ = 4tn(r 1) left behind by th idemic. Then. the stai

implicit in 7. These elements will play a central role later on J=dtn(r 1) left behind by the epidemic. Then, the static

when we calculate the Green functions perturbatively. AdroPerties of TdIP can be studied via the Green functions of
usual, the Green functions are the cumulants of the fields the debris density. In particular the response functions
and which correspond in graphical perturbation expansions!li M(N(0,0)) and their connected counterparts will be

to the sums of connected diagrams. Their actual calculation§Portant for our analysis because they encode the static
are performed most economically in a time-momentum repProperties of the percolation cluster of the debris emanating

resentation. To this end we will use the spatial Fourier trans{fom & seed localized at the origin at time zero. o
forms of the fieldsh and defined via After this prelude we now formally take the quasistatic

limit of the dynamic functional. The structure ¢f is such
that we can directly let

n(r,t):Je‘q'rnq(t), ﬁ(r,t):J i, (1), (3.9
q q

o]

n(r,t) —3(r), m(r):)\f dtn(r,t) — s(r).

where [y -1 =(2m)™[d% -~ In the time-momentum repre- o
sentation we can simply read off the diagrammatic elements (3.10
from the dynamic functional. The harmonic part @fcom- '
prises the Gaussian propagator This procedure leads us frof to the quasistatic Hamil-
_ , , tonian
(ng(Og (1)) = (2m) G(g,t-t")8(q +q’), (3.99
~ f g 1
— | 4 V24 tep 22 =
G(q,t) — H(t—t’)exd— AT+ qZ)t]' (3.9b) H —f d I'S(T Ve+ 25+ 652 25)3. (3.11)

where(--)o indicates averaging with respect to the harmonicy; s easy to see that generates each Feynman diagram that
part of the dynamic functiondB.4). The nonharmonic terms - contributes to(IT; m(ry)I1ji(F;, 0)). Standing alone, however,
give rise to the verticesn, -N*fe(t-t'), and A%gAt  this Hamiltonian is not sufficient to describe the static prop-
~t")o(t-t"). All four diagrammatic elements off are de-  erties of tricritical isotropic percolatiofTIP). As a reminder
picted in Fig. 2. of its dynamical origin must be supplemented with the
causality rule that forbids closed propagator loops.

The propagator of the quasistatic theory follows from Eq.
(3.1)) [or likewise from Eq.(3.9)] as

As mentioned earlier, we are interested in the dynamic as
well as the static, i.et— oo, properties of tricritical percola- =\ — d , -
tion. Of course, we could base our entire RG analysis on the (SeS)o= (2mG@)dA+a), @)= +q°
full dynamic functional. 7 as given in Eq.(3.4). Then we (3.12
could extract the static behavior from the dynamic behavior
in the end by letting —cc. This would mean, however, that As far as vertices are concernet, implies the three-leg
we had to determine all the required renormalizations fromvertices 1 and fand the four-leg-vertexg: The quasistatic
dynamic Feynman diagrams composed of the diagrammatigropagator and vertices are shown in Fig. 3.
elements listed in Fig. 2. Fortunately, there is a much more Knowing all the diagrammatic elements, one can straight-
economic approach possible here which is based on takiniprwardly check in explicit graphical perturbation expan-
the so-called quasistatic limit. We will see shortly that thesions that the quasistatic Green functions calculated #ith
perturbation theory simplifies tremendously in this limit. All are equal diagram for diagram to the zero-frequency limit of
but one renormalization factor can be calculated using thishe dynamic Green functionghe Green functions of the
much simpler approach. Only for the one remaining renortime integrals ofn(r ,t)] calculated with7.

C. Quasistatic model

026114-6



GENERALIZED EPIDEMIC PROCESS AND. PHYSICAL REVIEW E 70, 026114(2004)

Before embarking on our RG analysis, we finally mention
the naive dimensions of the quasistatic fields. These are
given by

S~ u? s~ ut (3.13 @ o
a

FIG. 4. One-loop diagrams contributing to the renormalization
of I'; ; and I'y , if @ momentum-cutoff regularization is used. In
Now we will study the static properties of TdIP, that is, dimensional regularization, these diagrams are finite.
the properties of TIP. The dynamic properties of TdIP will be

addressed later on. rescaling. In this way we can learn about IR scaling proper-
ties of the critical system indirectly via the UV renormaliza-
tions. A correct and reliable statistical field theory constitutes
o ) ~ what Wilson[28] calls a logarithmic theory free of length

In principle, we could extract the properties of TIP di- scales. Only within such a theory does it make sense to apply
rectly from the correlation functions the techniques of renormalized field theory to critical sys-

(S(ry) -~ ST er) S0 tems.

IV. STATIC SCALING PROPERTIES

A. Diagrammatics

1. Divergent one-loop diagrams

= F1S(r ) - -1 )6 HES)
B f DlsS]s(ry) -+ Srnie : (4.) Two divergent one-loop diagrams can be assembled from
) ) . . . . the diagrammatic elements listed in Fig. 3. These diagrams,
However, since our model is translationally invariant, it is\which contribute to the vertex function, ; and T'; , are
much more convenient to use the vertex functidg in-  shown in Fig. 4. It is easy to see that they are linearly diver-
stead, which are related to the connected counterparts gent(i.e., theu dimension is 1for d=d.=5. No logarithmic
— _ ~ =i —\(con divergencies arise at one-loop order. Thus, the theory can be
GNNArY) =¢s(ry) -~ Sry () - Sru)) renormalized to one-loop order by additive renormalizations

(4.2 .
— & -2
of the correlation functions via Legendre transformation of = f=pfv-bAu™g), (4.33
their generating functional$30]. Graphically, the vertex o
functions consist of amputated one-line irreducible diagrams. T— 7=71-aAu*f = (r-aAv) +abA%u g,
As usual in determining the renormalizations, we can restrict (4.3b)

ourselves to the superficially divergent vertex functions, i.e., N
those vertex functions that have a non-negativeimension ~ Where the open circles indicate unrenormalized quantities
at the upper critical dimensiod,. A simple dimensional and wherea andb are positive constants. o
analysis shows that only the vertex functions that correspond Next we will switch to dimensional regularization for
to the different terms of the Hamiltonia@8.11), viz., Ty ,, co_nyenience. In this method all polynomial divergencies
Iy, Ty and Iy 5 are primitively divergent. Thus, the arising from the_Iarge cu_toff.are formally set to zero, and
theory is renormalizable by additive and multiplicative hence the two diagrams in Fig. 4 become finitalatThus,
renormalization of the fields and the parameters of thdhe additive renormalizations E¢#.3) become formally su-
theory. perfluous in dimensional regularization. However, it has to
Throughout, we will use dimensional regularization toPe emphasized that dimensional regularization is only a for-
calculate the Feynman diagrams Constituting the requiremal trick. PhySICally the additive renormalizations are.al'
vertex functions, i.e., we will compute the diagrams in di- ways present and we need the interaction term proportional
mensions where they are finite for large momenta and thef the coupling constarftto renormalize the theory, contrary
continue the dimension analytically towards This proce- o the claim of Ref[20]. Using dimensional regularization
dure converts the logarithmic large-momentum singularitieve have to keep in mind that these additive renormalizations
of a cutoff regularization into poles in the deviatierrd, ~ do exist and that the critical “temperature” is shifted by a
—d from d.. However, polynomial large-momentum singu- term 7.=aAv-abA?u?°g+0(g?). This 7. is formally set to
larities that require additive renormalizations are unacZ€ro in dimensional regularization.
counted for in dimensional regularization. In order to discuss
such additive renormalizations, we will occasionally use a
cutoff regularization with a large momentum cutaif Since there are ne poles at one-loop order, we have to
At this place it is worth stressing that real critical systemsproceed to higher orders in perturbation theory to find non-
not involve any UV divergencies because all inverse wavetrivial critical exponents. We will see thatpoles do occur at
lengths of fluctuations have a physical cutdffOn the other  two-loop order and that the two-loop diagrams will lead us to
hand, critical systems suffer from IR divergencies. Howeveranomalous contributions to the critical exponents of oeder
if and only if we use a reliable field theory, we can formally ~ We start with the self-energy. The two-loop diagrams con-
transform IR divergencies into UV divergencies by a simpletributing to the renormalization df, ; are listed in Fig. 5.

2. Two-loop calculation
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(a) (b) (c) (@) (b) {c)

FIG. 5. Two-loop diagrams contributing to the renormalization

of I'y ;.
In the following we will use a compact notation for the
() ()

diagrams. For examplé€5a) refers to diagranga) of Fig. 5. (d)
For the momentum integrals occurring in the diagrams we
will use the abbreviations

1
ligm = (4.4
. fql,qz (‘ﬁ"’ 1)k(0|§+ D'[(gy +gx)?+ 17 49

This has the benefit that we can write the divergent parts of
the diagrams in a compact form. For the self-energy we havg

(9) (h)

FIG. 6. Two-loop diagrams contributing to the renormalization
f 112.

—— 97_—8 T— E 2)
Ga=-3 ('112 g ud) (4.59 (60) = 2 X (6d) = (6g) = (6h) = 2fgr®1 15, (4.10D

2 Summing up the individual terms we get

(Sb) = E’T_Sl 113 (SC) = sz_gllzz. (45b) B 10Agg -
rlvz— 1- T f. (411)

The 1, can be calculated very efficiently with help of the e
parameter integral For the vertex functiorl’, ; we have to calculate the dia-

grams in Fig. 7. With

1
EDOZ | s G+ DG DL+ 0 P (7= (7T =-gr Iy (70)=-297"1125, (412
(4.6) Wwe obtain
Using dimensional regularization, we find tleexpansion Ty.= (1_ ng—s>' (4.13
result €
Habic) = - 277G5(a+ b= +O(9) @7 It remains to considel’; 3. The diagrams in Fig. 8 lead to
- 3¢ ' 2% (8a)= 2 X (8b) = (8d) = 3g* *ly5,
for the parameter integral. This calculation is sketched in the ” s
Appendix. In Eq.(4.7) we used the shorthan,=I'(1 2X(80)=(88)=2X (8) =69°7 “l1zo,  (4.14

+8/2)/(4’7T)d/2 for convenience. By tak|ng derivatives with From these expressions we get
respect to the parametess b, and c, we get the singular

parts [y3= (1 1840 r‘s)g. (4.19
2mG? ¢
l122= = 1112= = 2l113= 3 (4.9 For completeness, we conclude our quasistatic perturba-
tion theory by briefly returning to a cutoff regularization. In
of the required original integrals. Collecting we find cutoff regularization there are two additional singular two-
A loop diagramgsee Fig. 9. These diagrams have divergent
[q=(r+ g°) - (5a) - (5b) — (50) = (1 _ A0 r‘8>r insertions of the singular one-loop diagradb). Hence, the
&

3A.f? ( A9 )
- ey |1+ 227792 4,
26 106" /1 .9
for the singular part of the inverse response function. Here,
we introducedA, = 7G2/3 for notational convenience.
(a) (b) ()

Now we turn to the vertex functiod’y ,. Its two-loop

contributions are shown in Fig. 6. We obtain ) o o
FIG. 7. Two-loop diagrams contributing to the renormalization

(6a) = (6b) = (6€) = (6f) = fg7 °l 113, (4.109  of I'p;.

026114-8



GENERALIZED EPIDEMIC PROCESS AND. PHYSICAL REVIEW E 70, 026114(2004)

22u — 21
z=1-“Yi0W?), Z=1++o0w),
5¢ 5¢
(4.203
(a) (b) (c)

18u 10u
Z,=1+—+0(?, Z,=1+—+0(u?,

(d) (e) ()

3
Z=1+2+0W?), Y=—+0U), (4.200
e 2¢e

FIG. 8. Two-loop diagrams contributing to the renormalization for the renormalization factors. Equatiof.209 implies
of I'y 3

7, =1-— +0(ud). (4.21)
diagrams of Fig. 9 are finite in dimensional regularization. 10e

However, in the more physical cutoff regularization they di-

verge linearly with the cutoff. These divergencies are ulti- o .

mately cancelled by the additive renormalizations, B3). C. Renormalization group equation

In order to explore the scaling properties of tricritical per-

colation we now set up a renormalization group equation

B. Renormalization (RGE). This can be done in a routine fashion by exploiting

Next we absorb the poles into a reparametrization of the the fact that the bareunrenormalizefl quantities must not

fields and the parameters of the theory. For the quasistatfiéPend on the arbitrary mesoscopic length s¢a1b?ntro-
fields we employ the renormalizations duced in the course of the renormalization. In particular, the

bare Green functions must be independent.pf.e.,

s—8=71% 3.%=7V% (4.16) .
L ) 1d,loGNR =0, (4.22
For the parameters of the quasistatic Hamiltoniaiil) we o .
use the scheme where d,|, denotesu derivatives at fixed bare parameters.
Switching from bare to renormalized quantities, the identity
Ag— AQ=ZZZ,uu?, (4.173  (4.22 translates into the RGE
o 1 N —_—~_—
Ai./Zf _ Ai./Zf — Z;Zzl/ZZvUMs, (417b |:DM + E(N’y+ Nh’i/):|GN‘N =0. (423)
T 5= Z N2+ Yo?), (4.170 Here, D, stands for the RG differential operator
where D, = pd, + (1r,+ 02Kk, ) 0+ K, 0y + Budy  (4.24)
~ that features the Gell-Mann—Low functions
Z, = (Z22)*2. (4.18
It follows from Eg. (4.16) that the vertex functions are Bu= pd,lou= (— 2s + §‘y+ }3/— yu)u, (4.253
renormalized by 2" 2
Pin— f’N,N =7 NNy (4.19

1
UKU:,U«(Q#|OU:<—8+)/+ 57—%)0, (4.25b
Using Eq.(4.19 together with our two-loop resultgl.9),
(4.11), (4.13, and(4.15 we find

Yty
TKT+ UZKU’T: /1’(9;&'07-: ( - yT>T_ 77’002'

2
(4.250
and the Wilson functions
'y: /'LO"I-L|0 |n Z, ﬁ’)'/: /.L(9#|O |nE, (4263
(a) (b)
Y= pd,lon Zi, i=uu,T. (4.26b

FIG. 9. Two-loop diagrams that contain insertions of the one-
loop diagram shown in Fig. (8). In dimensional regularization, From Eq.(4.258 we know that the function®, and vk,
these two-loop diagrams are finite. begin with the zero-loop terms =8 and v, respectively.
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The higher order terms are determined by the Wilson func- d In Q(u(¥)) -

tions. The particular form of these functions can be straight- fT =q(u(e)). (4.39
forwardly extracted by using v... =,u,o7’u|0|n Z...

:Bé’uln Z... . In minimal renormalization th& factors have Here,Q is a p|aceho|der fok, ;(, andv_' respective|yq is a

a pure Laurent expansion with respectetd.e., they are of  pjaceholder for, respectively, 7, and,. The initial condi-

the formz---:1_”2.(.1.)/8’“2.(.2_?/82’“"" Thus, recursively in - ions pertaining to Eq(4.31) are X(1)=X(1)=1 andv(1)

the loop expansion, the Wilson functions also have a pure.;, The |ong-length scale behavior of TIP corresponds to the

Laurent expansion. Moreover, because the Wilson functiongmit ¢ 0. In this limit the RG flows to a fixed point deter-

must be finite fore —0, all the e poles in this expansion qined by the stable value. of u satisfying 8,(u-)=0. We

have to cancelthis provides a valuable check for higher 4 that this value is given by, =2¢/45+0(s?).

order calculations Hence, we can obtain the Wilson func-

tions readily from the fOVmU|3y,_,=(I)2uau2(1).(ghe Same & dimensions less than five. We will turn to the cate5 in

gumentatlo_n_also Ieads_tpm:—ZY _ZL."%Y , whereY Sec. IV E. In the vicinity of the fixed point- the solution of

is the coe(lif;uent of the first order term in the Laurent expan+,e RGE with these characteristics is fairly straightforward.

sion Y=Y"/e+--- of the Y factor. Using this prescription, \ye are confronted, however, with the slight complication

we derive frpm our re_normallzatlon facto(8.20 that the ¢ ~ jtself is not a scaling variable as can be seen from Eq.

Wilson functions are given by (4.250. In order to diagonalize the flow equations neawe
switch from r to

For the remainder of Sec. IV D we exclusively consider

44u 42u
7=?+O(UZ), ?=—?+O(u2), (4.273 p
o=717+ —r Uz, (432)

K — 2KU*

Y==36+0(U?), 7v,=-2u+0(?), (4.270  \here kyx=r(U), K»=x,(Us), and so on. It can easily be
checked thatr is governed by the flow equation

- _ 2 _
v.=—2u+0(9), v,=-3+0(u). (4.279 {)dln o(t) 33
From these results we get @ '
By, = (— 26 + 450 + O(U)u (4.289 I-e. thato is a true scaling variable. In the dimensions of

interest here the solutions of the characteristics for the scal-
ing variables are of power law form and we obtain

a 12 5 ~ B
K, =g+ == +0(u), (4.280 G <} mo,u, ) = ENTNI2 5 G R () o€, v, U, ),
(4.39
K= 1u +0(W), «,.=3+0(U) (4.280 where we have omitted nonuniversal amplitude factors. The
T 5 L various exponents appearing in £4.34) are given by
- — i 88
for the Gell-Mann—Low functiong4.25). 7= U) = 558 +0(e?), (4.353
D. Scaling properties
-~ ~ 28
1. General scaling form 7=Y(Us) == 7_58 +0(&?), (4.35h

Next we solve the RGHK4.23 by using the method of
characteristics. The strategy behind this method is to intro- 22 )
duce a single flow parametérthat allows us to reexpress the k1= KU) = ——e+0(%), (4.350

partial differential equatioi4.23 as an ordinary differential 225

equation in terms of. This equation then describes how the 7

Green functions behave under a rescaling Ky = K, (Us) = ==& + O(?). (4.350
75

,u,ﬂﬁ(g):/.l,e (4.29)

of the inverse length scalg. The characteristic for the di-
mensionless coupling constamis given by

Supplementing the solutio@.34) with a dimensional analy-
sis to account for naive dimensions we obtain the scaling
form

u( Gaurn(ry, mo,up) = €5N,Kllu<d—4)N+2N
=A@, W= 4.30 |
qr = Buule), um=u. (4.30 X Fai((€ur}, w201 €07, - tolg9),

(4.36)

¢

With the exception of the characteristic ferthe remaining
characteristics are all of the same structure, viz., where
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5N'K‘:<d_4+g)N+(2+;Z)N' P(S)=<6<J ddrs(r)—S)expfé(O)]>. (4.40

and where th&y are, up to nonuniversal amplitude factors, For big clusters witf6>1 we can expand the exponential to
universal scaling functions. The scaling exponents of the coffirst order(higher orders lead asymptotically only to sublead-

relation length and the crossover variable are ing correctiong and obtain
pe 2L 0wy, s PadS) = <6( f ddrs(r) - s)~s<o>> (4.4
2-k, 2 450
for the asymptotic distribution. We will return ©8,4S) in a
1=k 1 1 9 moment.
¢= 2-x, 2 50" O(&). (4.37b The percolation probabilitf®., is defined as the probabil-

ity for the existence of an infinite cluster generated from a
In the following we will concentrate on a path in the phasesingle seed. Henc®.. is given by
diagram spanned by the relevant variableand v which

approaches the tricritical point=v=0 asv~ 7. Hence, we P.=1- lim Jw dsecsP(9)
will neglect the crossover variable |o]?~|71"¢< 1, where c—+0J g
we have sefu=1 for convenience. In this regime we can
write the fundamental scaling for.36) as =1 - lim (exp[3(0) - Cf dirs(n)]).  (4.42)
- c—+0
~ — | ANB+NB' % v,

G i(r} 7 = I:N,N({h’i . (4.3 Via expanding ex{®(0)] we obtain the asymptotic forii84]

with P, =— lim (3(0)e"My, (4.43
c—+0

B= v(d -4 +17> = 1_ 1—73 +0(&?), (4.393 whereM = [dds(r). The virtue of this formula is that it re-

2/ 2 45 lates the percolation probability unambiguously to an expres-
sion accessible by field theory. For actual calculations the
, 7 2 ) term exg@—cM) has to be incorporated into the quasistatic
B =vi2+ 2= 1- a5° " O(&9). (4.39D  Hamiltonian. This leads to
The superscript of the scaling functioﬁ%lﬁ corresponds to H.=H +J d%c(r)s(r) (4.44

the sign ofr. Note thaté~ |7~ is the correlation length.
instead of the origingH. Here,c(x)=c is a source conjugate
2. Scaling behavior of various percolation observables to the fields. Whereas in genergb)=0 if c=0 by virtue of
Now we will exploit our knowledge about the correlation causality, th? limitc— +0 leads to a nonvanishing order pa-
functions of the fields to extract the scaling behavior of vari-rfameterp, n the spontaneously sym_metry broken active
ous observables that play an important role in percolatiof1@se. Having introducetl,, we can write

theory. First we will consider the case that the process starts P, =~ lim (3(0)).= - Gp4(0,7,c — +0,u,u),
with a single seed at the origin=0. Second we will look at c—+0 ’
the case that the density of the initial state is homogeneous. (4.45)

Let us start by considering clusters of a given finite Sze ) ) )

i.e., clusters with a finite masSof the debris given that the Where(:--)c denotes averaging with respectq. With the
process started with a seed, a single agent, at the arigin help of Eq.(4.49 and the scaling forni{4.38 we readily
=0. In principle, any reasonable initial state can be prepare@btain that
by choosing the appropriate seed dengify ). In the Lange- g

- : - i " P..~ (- )| 7F". (4.46
vin equation(3.1) this general initial condition corresponds
to an additional source termv'q(r,t)=po(r)8(A). At the  |n order to examine the scaling behaviorR{S) we can look
level of the dynamic response functiondl[Eq. (3.7)] such  at its moments defined by
an initial state translates into a further additive contribution .
—fd9rdtq(r ,H)Ti(r ,t). Thus, a seed(r,t)=48(r)4(t) is repre- & :f ds 4p(s 44
sented by the contributionti0, 0). At the level of the qua- ) 0 ©- (4.47
sistatic Hamiltoniart{ (3.11) such a seed is therefore repre-

sented by an additive tern®). Using Eq.(4.41), our scaling resul{4.38) leads to
Let P(SdS be the measure of the probability that the o -y
cluster mass of the debris generated by a seed at the origin is (8 = f (dN)*Gy 1({r},0,7) ~ [A4F KA (4.48
betweenS and S+dS In our field theoretic formulation the
probability densityP(S) can be expressed as This tells us thaP, scales as
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P.d7,S) = Sny(7) = SL0f (7%), (4.49  the correlation functions of the densitis§) scale in the

. . . . case of the homogeneous initial condition like
whereng is the number of clusters of siZeper lattice site.

The ng play an important role in percolation theory where * pg ek
they are called cluster numbers. The scaling exponents in the ~ Gnu({r}h 700 = 2 W f (dN)*Cn Rk 1. {T}7)
scaling form(4.48) reflect the usual nomenclature of perco- k=0 ™

lation theory. They are given by - |T‘IBN+B’NF*_';‘({|T‘Vr},|T‘B’—dypo). (4.59

= ! = % +0(?), (4.509 Itis obvious that the initial seed density plays the role of an
dv-p ordering field. Hence, the Green functions do not show criti-
cal singularities as long as, is finite. For the homogeneous

9p

_p 5 1 » initial condition the appropriate order parameter is given by
" qu-p " 2=372¢*0(). (4500 the density of the debris,
These exponents coincide with the corresponding exponents p=(S(r))y, = G1,0(r 7.po). (4.59

of conventional isotropic percolation only in mean-field
theory. It follows from Eq(4.48) that the mean cluster mass
(9 of the finite clusters scales as p= |T|Bfi(|7.|ﬁ'—dvpo)_ (4.60)

Equation(4.58) tells us that

(9 =M(7) = M|, (4.50  In the nonpercolating phage > 0) the order parametgr is
linear in py for small seed density with a susceptibility coef-
ficient that diverges as— 0,

p(7>0,p0) ~ 7 po, (4.61

{Nith the susceptibility exponeny given in Eq.(4.52. At
criticality (7=0) the order parametgs goes to zero folpg
—0 as

with the exponent
y=dv—(B+pB)=1+%s+0(s?). (4.52

Next we consider Green functions restricted to clusters o
given massS. In terms of the conventional unrestricted av-
erages with respect té{, these restricted Green functions
can be expressed for lar@as

p(7=0,p0) ~ pg’°, (4.62
COr},m) =(s(ry) -+ s(ry & f ddrs(r) - S/3(0))™, with the exponent

(4.53 s v

Equation(4.38) leads to the scaling form B

(S — | J(N-1)B+B+d, v dr- Finally, in the percolating phade<0) the order parameter
Ok = Fadl"rh[ 7779 becomes independent of the initial seed density in the limit
. po— 0 and goes to zero with as
(4.59 0 and ith

:1+%:3+%+0@%. (4.63

With the help of these restricted Green functions we can p(7<0) ~ |7~. (4.64)
write the radius of gyratioimean-square cluster radjusf , .
clusters of sizeS as Equations(4.46) and (4.64) show explicitly that the two or-
der parameters, namely, the densgitypf the debris and the
J & r2CS(r,7) percolgtion probabilitwa, have dif_ferent_ expon_entﬁ and
1+ B’. This stands in contrast to ordinary isotropic as well as
R§= . (4.59 directed percolation. As mentioned earlier, ordinary isotropic
de d9r C(ls)(r,r) and directed percolation are special in the sense that they
posses an asymptotic symmetry that leads to the equality of
Equation(4.54) then leads to the respective exponenfsand g’.
Réz SZ/foR(TS"p) (4.56 E. Scaling properties in five. dimensions: Logarithmic
corrections

with the fractal dimension

B

14

Here we will study TIP directly in five dimensions where
4 5 fluctuations induce logarithmic corrections to the leading
4 — 5558 + O(&%). (4.57) mean-field terms rather than anomalous exponents. First, we
will establish the general form of the logarithmic corrections.
We conclude Sec. IV by considering the scaling behaviorsecond, we will analyze how these corrections, to leading
of the statistics of the debris if the initial state is preparedorder, affect the observables studied in Sec. IV D.
with a homogeneous seed densify As discussed above,
such an initial state translates at the level of the quasistatic
HamiltonianH ((3.11)) into a further additive contribution Now we will solve the characteristics directly foi=>5.
—po  d93(r). Our general scaling forni4.39 implies that The Wilson functions stated in Eq§4.27) and (4.28 are

szd—

1. General form of the logarithmic corrections
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central ingredients of the characteristics. For economic reaional to 1. This generic diagram contributing to the Green
sons, we will use in the following an abbreviated notation forfunction Gy y satisfies the three topological conditions
the Wilson functions of the typéd(u)=f,u+f,u®+---. For

instance, we will write EQ.(4.289 as fB,(u)=,u+ B,u? L=P-Vg—V;—V;-N-N+1, (4.71a
+0(u®) and likewise for the other Wilson functions. Since

we are interested in the tricritical point, we $at0 through- P=3Vy+2Vi+V; +N, (4.71b
out.

rea?j(ﬁl)ymg the characteristic far, Eq.(4.30), for e=0 yields P=Vg+V;+2V, + N (4.710

1 Eliminating P we arrive at two equations for the number of
£=£(w)= eoexp[— ,3_W +0(In w)} , (4.65 vertices, namely,
2

Vi=N-1+L, (4.723
wheref, is an integration constant and where we abbreviated
W=, (4.66) 2Vg+Vi=N-1+L. (4.72H
To leading order we obtain from E@4.65 asymptotically = Switching fromf to the scaled vaNriabIé’:f/\@, we find
for £<1 that the diagram scales witl as gN"1"Y/2 with the factor
g-? being determined by the loop-order of the diagram.
= <1. (4.67 Upon renormalization this reasoning leads for0 to the
45in ¢| scaling form(4.70).
The remaining characteristics, E@.31) are solved via ex- Knowing Eq.(4.70 we can write down the scaling form
ploiting €d/d¢ = 8d/dw with the asymptotic result of the Green functions with its leading logarithmic correc-
tions. From the general solution of the RGE for the Green
Q(w) = Qowh/Az, (4.68  functions (4.69 in conjunction with the asymptotic result
where Qg symbolizes a nonuniversal integration constant.(4'67) we get
Having solved the characteristics, we obtain Gui{rh ) = €N+2Kl||n €|7K|/75—zz\1/225+<1—ﬁ>/2
G} D) = [ XW) YN ()X (W) V2N X Fyrerh,€2in €122 - (4.73

W) )

X FN’N({,LLH},W,W

(4.69 2. Logarithmic corrections to the percolation observables

. : . As above we will first consider the case that the process
as a formal scaling solution for the Green functions. . S "
emanates from a single local seed at the origin. Exploiting

In the following we have to be careful about the explicit ' : -
dependence of the scaling functiofigy on w even though Egéli(r‘:;%rr:,wve find that the percolation probability has the

we are interested in only the leading logarithmic corrections.
This intricacy comes from the fact that rather mean-field than Poo= €3I €775, (£72In €|711225), (4.74)
Gaussian theory applies at the upper critical dimension.

Hence we must carefully distinguish between the two rolegvherefy_is nonzero only forr<0. Now we fix the arbitrary
of g, viz., its role as a dangerous irrelevant variable whichbut small flow parametef so thatr* effectively acquires a
scales the fields and the parameters in the correlation arfthite value in the scaling limit,

response functions, and its rdlie its dimensionless forrm) _2 117225

as the loop expansion parameter. Only the latter role can be €in ¢| 7~ 1. (4.79
safely neglected for the leading logarithmic corrections. AsHence, we choose asymptotically

we shall see in the following, the dependence of the func-

tions Fy j on w if given by €2 ~ | 7llIn| 7|25 (4.76)

Collecting, we obtain that
Pu(7) ~ 6(= )| 7llIn| 7[>, (4.77)

To derive this result one can consider the loop-scaling of th Next we consider the probabilij(S, 7). Using the definition

generating functionals of the vertex and Green functions a 448 and the general resu@.73 we obtain

was done in Ref[32] for studying logarithmic corrections in — ¢6 43/225 1 ( p=2 -11/225_ p4 22122

DP. Here we uEeZ]a more ﬁirgct 9r]nethod to determine the P19 = Elin (FF=5Hp(¢in ¢ nin (FES).
dependence of the tree diagrams on the dangerous vagiable (4.78
Consider an arbitrary connected diagram witHoops, P Being interested primarily ifP(S, 7) as a function near criti-
propagatorsN externals legs,N externals legs, V, vertices  cality 7=~0 and not in the animal limi§— c with 7>0, we
of typeg, V; vertices of typef, andV, noise vertices propor- hold the second argument finite. Hence we choose

Fuirk no,w) = W(l_N)/Z[F;q,K,({r}, 7,v/\w) + O(Yw)].

(4.70
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€4~ SY(In 97221223, (4.79
With these settings we find
P(7,9) = S%2(In 9245 p(7SH?). (4.80

The scaling functiorfp(x) is found with the help of a simple
mean-field calculation to be proportional to €xponst @ (b)
X x?)as long as« is finite. Forx— c it crosses over to the
animal limit with its own independent scaling behavior. Note
that there is, at the order we are working, no logarithmic
correction associated with th&"? in the argument of the

FIG. 10. Dynamic two-loop diagrams which provide us with the
renormalization factor of the kinetic coefficient

/ _

scaling function. As a corollary of Eq4.80), we obtain the € ~ pgIn pol 64, (4.88
critical behavior of the mean cluster mass, From Eq.(4.85 in conjunction with Eq(4.88 we obtain

M(7)=(9 ~ 7 Yin 72/, (4.80) p(7=0,p0) ~ pglIn pol**°. (4.89

Now we turn to clusters of a given sz The scaling | 551y, the order parameter should be independent of the seed
behavior of the Green functions restricted to these clusteraensity in the percolating phase fps— 0, i.e., the scaling

takes on the form function f- of Eq. (4.86) should approach a constant in this

cf\f)({r},T) = (N*O||n ¢|(43-220)/225 limit. Thus, we get
X Fn({er}, €73In €725, ¢4in ¢|?2/22%) p(r<0) ~ [A4*In|| "+ (4.90

(4.82  in this regime.

in five dimensions. From this scaling it is straightforward to
extract the radius of gyration of clusters of si3evia the
definition (4.55). Choosingt per Eq.(4.79 leads to In this section we will study dynamic scaling properties of
TdIP. To find out these properties we have to renormalize the
—cl/2 11/22 1/
Ré‘ S™(n 9 Tr(759). (4.83 dynamic response function@.?). In comparison to the qua-

In mean-field theory, as a straightforward calculation showsSistatic Hamiltonian3.11), J has one additional parameter,
the scaling functiorfr(x) is identical to a nonuniversal con- namely, the kinetic coefficient. To determine the renormal-
stant. ization of \, we have to calculate one of the dynamic vertex
In the remainder of Sec. IV E we will consider the homo- functions in full time or frequency dependence. A dynamic
geneous initial condition. Thé\-point density correlation RGE then leads to a general scaling form for the dynamic
functions obey ind=5 the scaling form Green functions. This scaling form allows us to deduce the
dynamic scaling behavior of various percolation observables.

V. DYNAMIC SCALING PROPERTIES

GN,N({r}yTypO) - €N+2N“n €|l/2+6]N/150—22N/225

X Fnjers, ¢ i ¢|7tH=%5r, In order to determine the renormalizationxafwe could
X €73In ¢[76V159,) . (4.84) calculate the frequency dependent part of any of the superfi-
_ cially divergent vertex functions. For convenience, we
Specifying Eq.(4.84) to N=1 andN=0, we obtain the scal- choose to work witll’; ;. Two dynamic two-loop diagrams
ing behavior of the mean density of the debris, for the self-energy can be constructed from the diagrammatic
elements in Fig. 2. These two diagrams are shown in Fig. 10.

A. Diagrammatics

7 — 181/450
p(7.p0) = €]In €| After Fourier transformation and some rearrangements,
X Fy o €73In €]71225; ¢=3|In ¢|61150;) we get from the diagrams the contribution
4.8 B C 3 3
( 5) (108)+(10 b):i(,()gT_€<__+—+_|122+_|113>
For 7#0 and small seed density, it is appropriate to 8 2 8 4
choosef according to Eq(4.75). This provides us with (5.1

p(7,p0) = [MIn| A% (po| 717¥4In| 7| 73). (4.86)  toT'; 1, where we have not displayed various tefth®se not

. . o linear in the frequency) for notational simplicityB andC
The scaling functiorf,(x) behaves likef,(x) ~x for smallX,  stand for the integrals

and hence
1
p(7>0,p0) ~ por YIn 7245 4.8 B=J
(7= 0.po) = porHjin 7 (4.87 i T+ DA+ DG + G+ (01 + 0% + 3
in this regime. At7=0, the mean density is a function p§ (5.2)
only. To obtain the logarithmic corrections for this case, we '
set and
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_ f 1 D, = pdy, + NGoy + (i, + 0K, )3+ VK3, + Budy
apa, (1 + D5+ D0l + (a1 +0° + 2] (5.12
(5.3
) ) C. Scaling properties
These integrals can be calculated for example by using )
Schwinger parametrizatiofef. the Appendiy. Thee expan- 1. General scaling form
sion results foB and C read Upon using the method of characteristics we obtain the
o 462(3 fom o 4_G§ 5 dynamic scaling form )
9e O =3 : G ((r 1) = EnRy (02NN

The ... contributions in Eq(5.1) cancel and we finally get X F @ €ur, Onp?t), w2al €, o€ 47),

wGZgT V3 (5.13
(10a)+(10b)-—<2——+—). (5.5
3e 2 6 where
5N,N:<d_4+17+Z>N+<2+17) (B+Z>N+’8—~

B. Renormalization and renormalization group equation 2 2 v

The dynamic theory requires an additional renormaliza- (5.149
tion factor, sayZ’, in comparison to the quasistatic theory .
due to the existence af poles in the frequency dependent z=2+¢
terms. Taking into account that the dynamic fiefdandn 8 4-13)\2
are related to the quasistatic fielslands via Eq.(3.10, we =2 ( A ) - O(&?)
introduceZ’ consistent with the renormalization scheme in 15" 7 )5
Egs.(4.16 and(4.17) by letting =2-0.0558 + O(s?). (5.14b

n—h=Z'%n N —\=(ZZ)YA. (5.6)  The dynamic exponerttis identical to the fractal dimension

Dyin Of the minimal or chemical pati),,;,=z [33]. Near the
tricritical point (v=0), we get from Eq.5.13 that the re-
sponse and correlation functions of the agent at tirnbey
the scaling form

Combining Eq.(5.5 with the zero-loop part of the vertex
functionI'; ; we get by applying our renormalizations

o 12-3 E
Fl,lziw|:(Z’Z)1/2—£<l+—\)+O(u2):|_ )
> Gnurht ) = tTNABI N S 1, 7t1),
> (5.15

To keep the formula(5.7) simple, we have once more

h

dropped all terms that are not lineardn From Eq.(5.7) we where _
can directly read offZ'Z)2 to orderu. Taking into account B (11 4 - \'3) ,

is yi 8= =1 T 1
Eq. (4.20), this yields ° vz 3 T /45 +0(), (5.163

- \3 58 )
=1+ 5 4-y3
Z=1+ 8( T 15) + 0. 58 VS—VZ_1+<§— Al )E)+o(82) (5.16H

The corresponding Wilson function reads
2. Dynamic scaling behavior of various percolation
58 4-13
y =2 = - u+0o(u?). (5.9 observables
15 ™ First we will consider the spreading of the agent emanat-
Now we have all the information required to calculate theing from a localized seed at=0 andt=0. Later on, we will

Gell-Mann—Low function turn to the case that the initial state at titve0 is prepared
N with a homogeneous initial densipy.
{=pdldn A=3(y - ) (5.10 The survival probabilityP(t, 7) that a cluster grown from

for the kinetic coefficient a single seed is still active at timtecan be derived from the

By proceeding analogously to the quasistatic case we odield theoretic correlation functions by usifig4]
tain the dynamic RGE P(t) = - lim (e NOR(-t)), (5.17)
k— o0
1 ~
{Du + E(Ny’ + N&)] Gun(r.thn=0. (5.1)  where nowN(0)=fd%n(r,0). By proceeding analogously to
the static case, i.e., by incorporating the term[ex(0)]
Here, the RG differential operat@,, is given by into the dynamic functional, one obtains
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Pt,7)=- I!im B=t)h=—Go (- t,,k=%2,u;\, 1), N, 7) ~ 7% Yexp(— constx 74). (5.28

(5.18 Knowing the density of the agent, we are in the position to
calculate the mean square distarRé(t, ) of the infected
where (- --), denotes averaging with respect to the new dy-individuals from the original seed by using
namic functional 7, that has absorbed the source term fea-

tur_iljg k. Equation(5.1_5) then implies that the survival prob- RAt,7) = 1 f d%rr2p(r,t, 7). (5.29
ability obeys the scaling form 2dM(t, 7)
P(t, 1) =t %f p(t1/75). (5.19  We obtain the scaling behavior

In the percolating phage-< 0) the survival probability tends RAt,7) = tisf 5 (t1/7) (5.30
to the percolation probability for largg P(t,7) — P..(7) where
~|7#". Hence, the universal scaling functiép(x) behaves _
asx?' for large values ok. _2_ 8 4-\3)e )

The mean density of the agent at timgrown from a 5,7 1 +<15+ 45+O(8 ). (5.3
single seed follows from Ed5.19 with N=N=1 as Mendeset al. [35] proposed a generalized hyperscaling

p(r t,7) = - 1-(B+B vz (1l 4107) (5.20 relation which translates in our case to

Knowing the density of the agent, we have immediate access 2(1 + ﬁ) S+ 2. =dz. (5.32)
to the number of infected or growth sites '

From Egs.(4.5)), (5.19), (5.29, and(5.29 we confirm that
N, 7) :fddfp(f,t,T), (5.21)  the spreading exponents indeed satisfy this relation. This is
not a surprise because the hyperscaling relat@32 is
which can be viewed as the average size of the epidemic dased only on the general scaling fo(g15).
time t. Equation(5.20 implies that Finally, we consider the scaling behavior of the time de-
pendent mean density of the agepﬁt,r,po):m(r,t)>p0 for

Nt 7) = s (7219, (522 {= 0 if the initial state at tim@=0 is prepared with a homo-
where geneous initial density,. As mentioned earlier, this initial
_ condition corresponds to a source tegfn,t)=pyd(t) in the
v (1 4-V3)\e 5 Langevin equation(3.1). This source term translates into a
7= -~1= (5 * )4_5 *0(%). (523 fyrther additive contribution po [ drfi(r ,0) to the dynamic

functional(3.7). In a theory like ours, where the perturbation
In the nonpercolating phage> 0), the integral[, dtNV(t,7)  expansion is based only on causal propagators and where no
is proportional to the mean magS) of the static clusters of correlators appear, no initial time UV infinities are generated.
the debris, Eq(4.51). The mean mass of the debris at time Therefore, no independent short time scaling behavior

on the other hand, is given by [27,31 arises andi(r,0) scales adi(r,t). Thus, we find,
t analogous to Eg4.58), that the dependence of the correla-
M(t,7) :f dt M(t', 7). (5.24)  tion functions onp, can be expressed as
0 )
_ _ Cu({rht, 7 po) = T ENE(r /g, o7, pot @720
For M we find the scaling form (5.33
— 47 1/v,

Mt 7) = t7F  (7775) (5.29 | particular, we obtain for the mean density of the agent
with p(t, 7 pO) — t_l_ﬁlyzfp(Ttl/VZ,pOt(dV_B’)/VZ)- (534)

i=14p=L=2 50¢ At criticality (r=0) it follows from this equation that the

s 7s . (5.26 o . . . L .

vs VZ agent density first increases in the universal initial time re-

The scaling functions$(x) and f ,,(x) are regular for small gime,
X. Fpr x.—>oo vye learn from lim_ ., M(t,7)=M(7)=(S in p(t,po) ~ pot”s. (5.35
conjunction with Eq(4.51) that Then, after some crossover time, it decreases,

fM(X) = X_yfj\/l(xvz), (5273 p(tva) — t—l—,B/VZ’ (536)

Mo - fh,(y) ~ exp(— constx ). (5.27n  With the critical exponent
—

It foIIows_that the number of growth sites behaves for 0 1 +E — 3 _ (&7_ 4- \’3>£ +0(e?). (5.3
asymptotically as vz 2 3 90
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The time dependence of the order parameter, the density As in Sec. V C 2 our emphasis here is on the time depen-

of the converted individuals dence of various measurable quantities. Hence we fix the
N arbitrary flow paramete€ as long as\|7dt<1 by setting
Ht, T,po) = fo dt/p(t’,T,po), (538) €2 — t—l(ln t)—a. (545)

follows from Eq.(5.34): In the contrary cas&|7t>1 we must use the choiqé.76).

. ~ 2. Logarithmic corrections to dynamic percolation
plt, 7,po) = A2 (7112, pot@ Az (5.39 observables

This scaling form goes exponentially to the time independent As above we will first consider the initial condition that_
scaling form(4.60) in the large time limit. Equatiori5.39  the process starts from a single local seed at the spacewise

implies and timewise origin. The first quantity that we are going to
_ ) consider is the survival probability?(t,7). Utilizing Eq.
p(t,0,p0) ~ pot (5.40  (5.18 in conjunction with Eq(5.42) we obtain
for t_he i_nitial time ord_er parameter scaling at criticality. The P(t,7) = €2In €| p(¢2In €[2t, €72|In ¢]71/2257)
scaling index appearing here is
(5.46)
0= lz (5.41 The choice(5.45) then leads to
V.
P(t,7) =t X(In t)@fp(7t(In 1)), (5.47)
D. Logarithmic corrections in five dimensions with the exponents
Here we are going to investigate how logarithmic correc- 7 1/11 4- \E
tions influence the dynamic scaling behaviodm5. We will ap=---a=——|\—~-—— |, (5.483
. ) : . L 75 45\ 3
briefly explain how the general considerations on logarithmic
corrections in the quasistatic theory given in Sec. IV E1 have I
to be augmented and modified in the dynamic theory. Then a-a- 11 _ i(_ 5 N 4—\3). (5.480
we will derive the logarithmic corrections for all of the dy- 7 225 45\ 3
namic observables studied above. Hence, we have at criticality and near criticality wikhrt

1. General form of the logarithmic corrections <1

Compared to the quasistatic theoxy,takes on the role of P(t,7=0) ~t7H(In H)*. (5.49

X and there is an additional flowing variable, vix. BothX' e asymptotic behavior for large times below and above
and\ have characteristic equations of the form given in Eq'criticality respectively, is given by

(4.31) and hence the flow of these variablesdr5 is de-

scribed by Eq(4.68). The dynamic scaling fornt5.13 be- P(t,7> 0) ~ 7In 7?*%exp(— constx trIn 727
comes (5.509
Gulir th7) = (P2 (W)X (w) V2 and
—D (=) ~ 2145
« FN’N({M,,(M)ZMW)G’ dw)zyw) PAt,7< 0) = Pu(= 1)) ~ |fin]
(ut) X exp(— constx t|]|In|#|?).

(542 (5.50D

in five dimensions. Since we are interested solely in the lead- next we look at the mean density of the active particles at
ing logarithmic corrections, it is sufficient for our PUIPOSES time ¢ Upon specializing the general scaling fotm43) to
to account for the explicit dependence of the scaling func-N_—N_1 we find

tions Fyy onw to zero-loop order; see E.70. Using the

asymptotic result4.67) we obtain p(r,t,7) =€%In f|apr(fr,€2||n €2, €72|In €| 12/225;)
Gyt 7) = €3N+2N||n €|7l~\l/75+(a—22/225N+(1—N)/2 (5.5
X Fur(er, lin ¢Pt,e2in ¢z, With
1 1(1 4-\3
o4 a5t es2
wherea is the abbreviation of
= From the mean density we obtain the mean number of agents
a= i(ﬁ + 4- \3) =0.0279. (5.44) (5.21) at timet by integrating over, and choosing5.45) for
45\ 15 T =0,
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Nt 7) = [In t2F (7t(In 1)3). (5.53 Pt 7= 0,00) = p3in p0|4/15f_;)(tpg/3|ln Po|_2ag/3)-
For the mean mass of the debris at titnas defined in Eq. (5.63
(5.24) we get

M(t,7) = t|In t28F,, (7t(In D). (5.54) The scaling functiorf_,;(x) exponentially approaches the sta-

tionary density(4.89).
M(t,7) crosses over for>0 andt—o to a function that
approaches\(7)=(S), Eq. (4.81), exponentially. The mean
square distancéR?(t,7) of the agents from the origin is
found to behave as

VI. CONCLUDING REMARKS

In summary, we have generalized the usual GEP by intro-
R2(t, 7) = t(In 13 (st(In 1)), (5.55 ducing a further state in the lives of the individuals governed
by the process. Our GGEP has a multidimensional phase
Finally, we will consider the homogeneous initial condi- diagram featuring two surfaces separating endemic and pan-
tion. The analog of Eq(5.33 in five dimensions with the demic behavior of the epidemic. One of the surfaces is a

flow parametet still arbitrary reads surface of first order phase transitions whereas the other sur-
face consists of critical points representing second order tran-
Ca({rht, 7, pg) = €3V[In ¢[(@-22/229N+1/2 sitions. The two surfaces meet at a line of tricritical points.
X Fn(er, €2)In €[2t}, ¢72In ¢[2v/225, '_I'he second order .ph_ase trgnsitions bglong to the.u.ni_ver-
sality class of dynamic isotropic percolation. In the vicinity
X €73In £]7%¥1%%) (5.56  of these transitions, the asymptotic time limit of the GGEP is

governed by the critical exponents of the usual percolation.

where we have used E(b.43. From Eq.(5.56 we readily 1o epyris feft behind by the process forms isotropic perco-
obtain the critical behavior of the mean density of the agent$ytion clusters.

by settingN=1 and fixing¢ for not too larget via Eq.(5.49), Mainly, we were interested in the tricritical behavior of
3/ a a3/ 0 the GGEP. We set up a field theoretic minimal model in the
p(t, 7,po) = 71N %F (7t(In )%, pot™<(In 1)™%), form of a dynamic response functional that allowed us to

(5.57 study in detail the static and the dynamic scaling behavior of
the universality class of tricritical dynamic isotropic percola-
where tion. In particular we calculated the scaling exponents for
—~ various quantities that play an important role in percolation
_181 a_ i(@ 4‘\’3> theory. As expected, these exponents are different from the
a,= --= - , (5.58a o
450 2 90\ 3 T exponents pertaining to dIP. For example, we computed the
exponents3 and B’, respectively, describing the two differ-
[ ent order parameters, viz., the density of the debris and the
%= 61 3a = i(3_5 _4- \3)_ (5.58b percolation probability. Whereag8 and g’ are identical in
3 dIP, they are different in TdIP. Although TdIP is described by
o , . scaling exponents different from those of the usual percola-
At criticality, the scaling function is expected to behave asijo \ve learned that its spreading as well as the statistics of
fo(0,y)~y for y<1. Thus, the agent density increases ini-jis cjusters behave in many ways like conventional dynamic

"~ 150 2 30

tially, percolation. For example, TdIP has meaningful cluster num-
bers, fractal dimensions, etc. Thus, we propose to refer to the
~ ay > . ! L ;
p(1,0.p0) ~ polIn . (5.59 static properties of the TdIP as tricritical isotropic percola-
After some crossover time it decreases as tion. , . ) ,
The surface of first order transitions is characterized by a
p(t,0,p0) ~ t73%(In t)%. (5.60  compact cluster growth, i.e., the fractal dimension of the

clusters is identical to the their embedding dimension. We
The mean density of the debris at timecan be extracted hope that our findings trigger numerical work with the aim of
without much effort by integrating over Eq5.57. This  verifying the predicted first order percolation transitions. A

yields promising strategy that avoids a cumbersome detection of
o . jumps in the order parameters might be to measure directly
p(t, 7,p0) =t7Y(In t)%f,(t(In 1), pot>%(In 1)) the fractal dimension of clusters near the first order surface.
(5.6
if t is not too large. In the caset®2— o we have to use ACKNOWLEDGMENTS
€3 ~ polin po| 78250, (5.62 This work has been supported by the Deutsche Fors-
chungsgemeinschaft via the Sonderforschungsbereich 237
which implies especially at criticality “Unordnung und grosse Fluktuationen.”
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APPENDIX: CALCULAGT|0N OF 'Ik')HE PARAMETER (abio 1 foc dsldszds3ssexd_ s,a—s,b - 8:0)
INTEGRAL I(a,b;c ,0,C) = .
(b0 (4mJ, [5185 + 5,83+ 5,81
In this appendix we sketch our calculation of the param- (A3)

eter integrall(a,b;c) defined in Eq(4.6). Most of the inte- o ) )

grals that have to be performed in calculating the two-loop=n@nging integration variables; —tx, s,—t(1-x), ands,
diagrams can be derived fromfa,b;c) simply by taking — tZ and carrying out the integration gives

derivatives with respect to the parametersh, andc. The (4-d) 7

integralsB and C, which occur in the dynamic calculation I(a,b;c)=——5 dzf dX———»

and cannot be extracted frorfa, b;c) by taking derivatives, @m= Jo o [z+x(1-X)]

can be calculated by similar meanslés,b;c). X [ax+ b(1 —x) +cz]¢. (A4)

In the following we use the so-called Schwinger param- L , o )
etrization which is based on the identity The remaining integrations can be simplified by letting
— (21-1)x(1-x). After this step, which leads to

I(a,b;c) = (4 d)f f dx@ ¥2(1 - x)2 92

><21‘d’2(1 -2)[axz+b(1-x)z

+ex(1-x)(1-2)]%4, (A5)

L
A“_F(n)fo dst™“exp(—-As), Ren>0. (Al)

In this parametrization, Eq4.6) takes the form

B one sees easily that the remaining integrations are finite at
i) = _ 2, the upper critical dimension. Hence, they can be conve-
@b;0) fql % fo ds,ds,dsSsexpl= s + 2] niently evaluated directly ati=5. An & expansion of the

) 5 gamma function
=Sz +b] - si[(gy +q2)° +cl} (A2) I(1+8/2)?
r4-dy=————+0(% (AB)
A completion of squares in the momenta renders the momen- e

tum integrations straightforward. We obtain finally leads to the result fol(a,b;c) stated in Eq(4.7).
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